ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

点群と空間群

ショートカット: 違い類似点ジャカード類似性係数参考文献

点群と空間群の違い

点群 vs. 空間群

数学における点群(てんぐん、point group)とはある図形の形を保ったまま行う移動操作のうち、少なくとも1つの不動点を持つものを元とする群のこと。 このような抽象的な群の概念を導入することによって、物理学や化学における結晶や分子対称性を数学的に記述することができる。そのような応用との関係からふつう3次元ユークリッド空間における変換の範疇で考えることが多い。. 間群(くうかんぐん、)は、結晶構造の対称性を記述するのに用いられる群である。群の元となる対称操作は、点群での対称操作(恒等操作、回転操作、鏡映操作、反転操作、回映操作、回反操作)に加え、並進操作(すべての点を平行に移動させる操作)である。 空間群は全部で230種類あり、すべての結晶はそのうちの1つに属している。ただし、原子の配列は原子の性質や化学結合によるため、大半の結晶構造は100種類程度の空間群に含まれる。 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがある。.

点群と空間群間の類似点

点群と空間群は(ユニオンペディアに)共通で10ものを持っています: ヘルマン・モーガン記号シェーンフリース記号剰余類群 (数学)結晶結晶点群鏡映部分群恒等写像既約表現

ヘルマン・モーガン記号

ヘルマン・モーガン記号(または国際記号)とは、結晶の点群や空間群、それらに含まれる対称要素の記述に用いられる記号である。ドイツの結晶学者カール・ヘルマンとフランスの鉱物学者シャルル=ヴィクトル・モーガンの名前に因んで名付けられた。.

ヘルマン・モーガン記号と点群 · ヘルマン・モーガン記号と空間群 · 続きを見る »

シェーンフリース記号

ェーンフリース記号(シェーンフリースきごう、)とは、点群を記述、即ち、対象とする図形や物体の対称性を記述するために用いられる記法の一つである。主に分子に対して用いられることが多い。 他に、点群を記述するための記法としては、ヘルマン・モーガン記号(国際記法、)がある。これは、主に結晶の対称性を記述するのに用いられる。 ドイツの数学者、アーサー・モーリッツ・シェーンフリース(Arthur Moritz Schönflies)に因む。.

シェーンフリース記号と点群 · シェーンフリース記号と空間群 · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

剰余類と点群 · 剰余類と空間群 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

点群と群 (数学) · 空間群と群 (数学) · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

点群と結晶 · 空間群と結晶 · 続きを見る »

結晶点群

結晶点群()とは、結晶において許される対称操作の集まりがつくる群(点群)のこと。ただしこの対称操作には並進操作は含まれない。結晶点群は32種類存在する。.

点群と結晶点群 · 空間群と結晶点群 · 続きを見る »

鏡映

数学における鏡映(きょうえい、reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。.

点群と鏡映 · 空間群と鏡映 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

点群と部分群 · 空間群と部分群 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

恒等写像と点群 · 恒等写像と空間群 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

既約表現と点群 · 既約表現と空間群 · 続きを見る »

上記のリストは以下の質問に答えます

点群と空間群の間の比較

空間群が26を有している点群は、47の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は13.70%です = 10 / (47 + 26)。

参考文献

この記事では、点群と空間群との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »