有限集合と束 (束論)間の類似点
有限集合と束 (束論)は(ユニオンペディアに)共通で8ものを持っています: 和集合、冪集合、全単射、直積集合、順序集合、部分集合、自然数、数学。
和集合
数学において集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、union)、あるいは演算的に集合の和(わ、sum)、もしくは結び(むすび、join)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである。
和集合と有限集合 · 和集合と束 (束論) ·
冪集合
冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的にかつ構成的に与える公理的集合論では、新たに作られた原体の冪集合もしくはそれに準ずる複数の冪集合が、それぞれの連続性に関わらず集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。
冪集合と有限集合 · 冪集合と束 (束論) ·
全単射
数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が挙げられる。 全単射であることを1対1上への写像 (one-to-one onto mapping)あるいは1対1対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、f は可逆であるともいう。
全単射と有限集合 · 全単射と束 (束論) ·
直積集合
数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。
有限集合と直積集合 · 束 (束論)と直積集合 ·
順序集合
順序集合(じゅんじょしゅうごう、)は集合の要素の間に順序が定義された集合。順序とは二項関係であって後述する反射律・推移律などを満たすものであり、数の大小関係などを一般化したものである。 全ての2要素が比較可能(順序が定義されている)ものを特に全順序集合()という。例えば実数における大小関係は全順序集合である。 また、全順序ではない順序集合の例としては、正の整数全体の集合に整除関係で順序を定めたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序と見なしたものがある。 後述するように、順序が満たすべき公理の種類により、前順序集合、半順序集合()、全順序集合がある。多く場合、半順序集合を指して「順序集合」と呼ぶことが多いが、分野によっては前順序集合や全順序集合を指す場合がある。
有限集合と順序集合 · 束 (束論)と順序集合 ·
部分集合
部分集合(ぶぶんしゅうごう、subset)とは数学における概念の一つ。集合Aが集合Bの部分集合であるとは、AがBの一部の要素だけからなることである。AがBの一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。
有限集合と部分集合 · 束 (束論)と部分集合 ·
自然数
自然数(しぜんすう、natural number)とは、個数もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは#自然数の歴史と零の地位の節を参照)。日本では高校教育課程においては0を入れないが、大学以降では0を含めることも多い(より正確には、代数学では0を含め、解析学では除外することが多い)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに前者を正整数、後者を非負整数と言い換えることによりこの問題を避けることもある。
有限集合と自然数 · 束 (束論)と自然数 ·
数学
数学(すうがく)とは、数・量・図形などに関する学問であり、理学の一種。「算術・代数学・幾何学・解析学・微分法・積分法などの総称」とされる。 数学は自然科学の一種にも、自然科学ではない「形式科学」の一種にも分類され得る。
上記のリストは以下の質問に答えます
- 何有限集合と束 (束論)ことは共通しています
- 何が有限集合と束 (束論)間の類似点があります
有限集合と束 (束論)の間の比較
束 (束論)が53を有している有限集合は、41の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は8.51%です = 8 / (41 + 53)。
参考文献
この記事では、有限集合と束 (束論)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください: