ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

数理生物学と方程式

ショートカット: 違い類似点ジャカード類似性係数参考文献

数理生物学と方程式の違い

数理生物学 vs. 方程式

数理理論生物学(すうりりろんせいぶつがく、mathematical and theoretical biology)とは、生物学、バイオテクノロジーおよび医学にまたがる学際的な研究分野の一つである。 数理生物学(すうりせいぶつがく、mathematical biology)、または生物数学(せいぶつすうがく、biomathematics)と呼ばれることもあり、その場合は、数学的側面を強調している。また、理論生物学(理論生物学、theoretical biology)と呼ばれることもあり、その場合には、生物学的側面を強調している。 少なくとも4つの主要な亜領域、生物数学モデリング(biological mathematical modeling)、複雑システムバイオロジー(relational biology/complex systems biology(CBS))、バイオインフォマティクス(bioinformatics)、および計算機数学モデリング(computational biomodeling/biocomputing)を含む。. 14''x'' + 15.

数理生物学と方程式間の類似点

数理生物学と方程式は(ユニオンペディアに)共通で13ものを持っています: 力学系偏微分方程式差分法常微分方程式微分方程式化学カオス理論線型代数学生物学物理学方程式数学数理モデル

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

力学系と数理生物学 · 力学系と方程式 · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

偏微分方程式と数理生物学 · 偏微分方程式と方程式 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

差分法と数理生物学 · 差分法と方程式 · 続きを見る »

常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

常微分方程式と数理生物学 · 常微分方程式と方程式 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

微分方程式と数理生物学 · 微分方程式と方程式 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

化学と数理生物学 · 化学と方程式 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

カオス理論と数理生物学 · カオス理論と方程式 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

数理生物学と線型代数学 · 方程式と線型代数学 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

数理生物学と生物学 · 方程式と生物学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

数理生物学と物理学 · 方程式と物理学 · 続きを見る »

方程式

14''x'' + 15.

数理生物学と方程式 · 方程式と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

数学と数理生物学 · 数学と方程式 · 続きを見る »

数理モデル

数理モデル(すうりモデル、mathematical model)とは、通常は、時間変化する現象の計測可能な主要な指標の動きを模倣する、微分方程式などの「数学の言葉で記述した系」のことを言う。モデルは「模型」と訳され「数理模型」と呼ばれることもある。元の現象を表現される複雑な現実とすれば、モデル(模型)はそれの特別な一面を簡略化した形で表現した「言語」(いまの場合は数学)で、より人間に理解しやすいものとして構築される。構築されたモデルが、元の現象を適切に記述しているか否かは、数学の外の問題で、原理的には論理的には真偽は判定不可能である。人間の直観によって判定するしかない。どこまで精緻にモデル化を行ったとしても、得た観察を近似する論理的な説明に過ぎない。 数理モデルは、対象とする現象や、定式化の抽象度などによって様々なものがある。.

数理モデルと数理生物学 · 数理モデルと方程式 · 続きを見る »

上記のリストは以下の質問に答えます

数理生物学と方程式の間の比較

方程式が92を有している数理生物学は、78の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は7.65%です = 13 / (78 + 92)。

参考文献

この記事では、数理生物学と方程式との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »