ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

数学と数論

ショートカット: 違い類似点ジャカード類似性係数参考文献

数学と数論の違い

数学 vs. 数論

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。. 数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

数学と数論間の類似点

数学と数論は(ユニオンペディアに)共通で22ものを持っています: 双子素数合同数代数学微分積分学バーチ・スウィンナートン=ダイアー予想リーマン予想ピタゴラスの定理フェルマーの最終定理ダフィット・ヒルベルトアラビア数学インドの数学ガロア理論コラッツの問題ゴールドバッハの予想素数純粋数学組合せ数学複素解析計算機自然数整数

双子素数

双子素数(ふたごそすう、twin prime)とは、差が 2 である2つの素数の組のことである。組 を除くと、双子素数は最も近い素数の組である。双子素数を小さい順に並べた列は である。.

双子素数と数学 · 双子素数と数論 · 続きを見る »

合同数

合同数(ごうどうすう)とは、辺の長さがすべて有理数である直角三角形の面積のことである。例えば、辺の長さが (3, 4, 5) の直角三角形の面積 6 や、(3/2, 20/3, 41/6) の面積 5 は合同数である。しかし、1, 2, 3, 4 は合同数ではない。.

合同数と数学 · 合同数と数論 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

代数学と数学 · 代数学と数論 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

微分積分学と数学 · 微分積分学と数論 · 続きを見る »

バーチ・スウィンナートン=ダイアー予想

数学において、バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの ''L''-関数 L(E, s) の s.

バーチ・スウィンナートン=ダイアー予想と数学 · バーチ・スウィンナートン=ダイアー予想と数論 · 続きを見る »

リーマン予想

1.

リーマン予想と数学 · リーマン予想と数論 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

ピタゴラスの定理と数学 · ピタゴラスの定理と数論 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

フェルマーの最終定理と数学 · フェルマーの最終定理と数論 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

ダフィット・ヒルベルトと数学 · ダフィット・ヒルベルトと数論 · 続きを見る »

アラビア数学

アラビア数学(アラビアすうがく、Arabic mathematics)とは、8世紀から15世紀のイスラム世界において、主にアラビア語を用いて行われた数学全般のことである。近年ではイスラム数学 (Islamic mathematics) と称される場合もある。名称は慣例によるものであって、必ずしも明確に対象を表しておらず、アラブ地域外でも行われ、担い手にはアラブ人でない者もイスラム教徒でない者もいた。.

アラビア数学と数学 · アラビア数学と数論 · 続きを見る »

インドの数学

インドの数学(インドのすうがく、Indian mathematics)とは、紀元前1200年頃から19世紀頃までのインド亜大陸において行われた数学全般を指す。.

インドの数学と数学 · インドの数学と数論 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

ガロア理論と数学 · ガロア理論と数論 · 続きを見る »

コラッツの問題

ラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。1937年にローター・コラッツが問題を提示した。問題の結論の予想を指してコラッツの予想と言う。固有名詞に依拠しない表現としては3n+1問題とも言われ、初期にこの問題に取り組んだ研究者の名を冠して、角谷(かくたに)の問題、米田の予想、ウラムの予想、他にはSyracuse問題などとも呼ばれる。数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べ、解決した人に500ドルを提供すると申し出た。 コンピュータを用いた計算により、5 × 260 までには反例がないことが確かめられている。 また、2011年度大学入試センター試験数学IIB第6問に題材として取り上げられた。.

コラッツの問題と数学 · コラッツの問題と数論 · 続きを見る »

ゴールドバッハの予想

ールドバッハの予想(英語:Goldbach's conjecture)とは、次のような加法的整数論上の未解決問題の1つである。ゴールドバッハ予想、ゴルドバッハの予想とも。 この予想は、ウェアリングの問題などと共に古くから知られている。4 × 1018 まで成立することが証明されていて、一般に正しいと想定されているが、多くの努力にもかかわらず未だに証明されていない。 The conjecture has been shown to hold up through 4 × 1018 and is generally assumed to be true, but remains unproven despite considerable effort.-->.

ゴールドバッハの予想と数学 · ゴールドバッハの予想と数論 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

数学と素数 · 数論と素数 · 続きを見る »

純粋数学

純粋数学(じゅんすいすうがく、pure mathematics)とは、しばしば応用数学と対になる概念として、応用をあまり意識しない数学の分野に対して用いられる総称である。 数学のどの分野が純粋数学でありどの分野が応用数学であるかという社会的に広く受け入れられた厳密な合意があるわけではなく、区別は便宜的なものとして用いられることが多い。また数学がより広範な範囲で利用されるに従い、分野としての純粋と応用との区別はあいまいで困難なものとなってきている。ただし、純粋数学という用語を用いる場合の志向としては、議論される数学の厳密性、抽象性を基とした数学単体での美しさを重視する傾向がある。.

数学と純粋数学 · 数論と純粋数学 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

数学と組合せ数学 · 数論と組合せ数学 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

数学と複素解析 · 数論と複素解析 · 続きを見る »

計算機

計算機(けいさんき)は、計算を機械的に、さらには自動的に行う装置である。人間が行う計算を援助するのみのものや、手動操作で自動的ではないものなどは計算器という文字表現をすることがある。.

数学と計算機 · 数論と計算機 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

数学と自然数 · 数論と自然数 · 続きを見る »

数(かず、すう、number)とは、.

数と数学 · 数と数論 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

数学と整数 · 数論と整数 · 続きを見る »

上記のリストは以下の質問に答えます

数学と数論の間の比較

数論が135を有している数学は、189の関係を有しています。 彼らは一般的な22で持っているように、ジャカード指数は6.79%です = 22 / (189 + 135)。

参考文献

この記事では、数学と数論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »