ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

形式主義 (数学)と数学の哲学

ショートカット: 違い類似点ジャカード類似性係数参考文献

形式主義 (数学)と数学の哲学の違い

形式主義 (数学) vs. 数学の哲学

数学における形式主義()とは、数学における命題を少数の記号によって表し、証明において使われる推論を純粋に記号の操作と捉える考え方のことを指す。. 数学の哲学(すうがくのてつがく、philosophy of mathematics)は、哲学(科学哲学)の一分野で、数学を条件付けている哲学的前提や哲学的基礎、そして数学の哲学的意味を研究するものである。数理哲学とも言われる。 数学的哲学(すうがくてきてつがく、mathematical philosophy)という用語が、しばしば「数学の哲学」と同義語として使われる。しかしながら、「数学的哲学」は、別の意味を少なくとも二つ持っている。一つは、例えばスコラ学の神学者の仕事やライプニッツやスピノザの体系が目標にしていたような、美学、倫理学、論理学、形而上学、神学といった哲学的主題を、その主張するところでは、より正確かつ厳密な形へと形式化するプロジェクトを意味する。さらに、個々の数学の実践者や、考えかたの似た現場の数学者の共同体が日頃抱いているものの考え方(=哲学)を意味する。.

形式主義 (数学)と数学の哲学間の類似点

形式主義 (数学)と数学の哲学は(ユニオンペディアに)共通で23ものを持っています: 佐々木力ハスケル・カリーユークリッド幾何学ルドルフ・カルナッププリンキピア・マテマティカヒルベルト・プログラムピタゴラスの定理ニコラ・ブルバキダフィット・ヒルベルトアルフレト・タルスキゲーデルの不完全性定理ソーンダース・マックレーン哲学算術真理自然数集合論推論規則構造主義数学数学的直観主義数理論理学

佐々木力

佐々木 力(ささき ちから、1947年3月7日- )は、日本の科学史学者、元東京大学教養学部教授 - 聞蔵IIビジュアルにて閲覧:書評自体は上野俊哉によるが、引用箇所は上野の著作範囲外にある。、大学院総合文化研究科教授。中国科学院教授。専門は科学史・科学哲学、とくに数学史であり、日本オイラー研究所名誉所長なども務めたが、「反時代的な社会主義者」を自称するトロツキストでもあり、日本陳独秀研究会会長も務めた - 聞蔵IIビジュアルにて閲覧。「九条科学者の会」呼びかけ人を務めている。.

佐々木力と形式主義 (数学) · 佐々木力と数学の哲学 · 続きを見る »

ハスケル・カリー

ハスケル・ブルックス・カリー(Haskell Brooks Curry、1900年9月12日 - 1982年9月1日)はアメリカの数学者、論理学者。.

ハスケル・カリーと形式主義 (数学) · ハスケル・カリーと数学の哲学 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

ユークリッド幾何学と形式主義 (数学) · ユークリッド幾何学と数学の哲学 · 続きを見る »

ルドルフ・カルナップ

ルドルフ・カルナップ(Rudolf Carnap, 1891年5月18日 - 1970年9月14日)はドイツの哲学者。論理実証主義の代表的論客として知られる。 ドイツのロンスドルフ(現在のヴッパータル)生まれ。バルメンのギムナジウムで学び、その後フライブルク大学で、数学、物理、および哲学を学ぶ。初め物理に興味を持っていたが、第一次世界大戦で研究を中断。その後、哲学者ブルーノ・バウフのもとでDer Raum(「空間」)と題した博士論文を提出し、引き続き論理実証主義の視点から物理学上の問題について研究した。1924年から1925年にかけてはフッサールの講義に出席している。 1926年にはウィーン大学で職を得、またウィーン学団の一員となる。当時のウィーン学団にはハンス・ハーン、モーリッツ・シュリック、フリードリヒ・ヴァイスマン、オットー・ノイラートなどがいた。またウィトゲンシュタインとも接触している。1928年の著書Der logische Aufbau der Welt(『世界の論理的構成』)では、科学的知識の経験主義的再構築を試みた。 1931年からプラハで自然哲学の教授を務める。1935年にはアメリカへ渡り、1941年に帰化。シカゴ大学、プリンストン高等研究所を経てカリフォルニア大学ロサンゼルス校(UCLA)で教鞭を執った。カルナップは一時期意味論の研究を行ったあと再び関心を科学的知識に向け、分析命題と総合命題の区別などについて論じた。.

ルドルフ・カルナップと形式主義 (数学) · ルドルフ・カルナップと数学の哲学 · 続きを見る »

プリンキピア・マテマティカ

短縮版『プリンキピア・マテマティカ 56節まで』の表紙 『プリンキピア・マテマティカ』(Principia Mathematica:数学原理)は、アルフレッド・ノース・ホワイトヘッドとバートランド・ラッセルによって書かれ、1910年から1913年に出版された、数学の基礎に関する全3巻からなる著作である。それは、記号論理学において、明示された公理の一組と推論規則から数学的真理すべてを得る試みである。『プリンキピア』のための主なインスピレーションと動機の1つは論理学に関するフレーゲの初期の仕事で、それがパラドックスをもたらすことをラッセルが発見したのである。 プリンキピアは、数学論理と哲学においてアリストテレスの『オルガノン』以来もっとも重要で独創的な仕事の一つと、広く専門家に考えられている。 モダン・ライブラリーは、この本を20世紀のノンフィクション書籍上位100のリスト(Modern Library 100 Best Nonfiction)の23位に位置づけた。.

プリンキピア・マテマティカと形式主義 (数学) · プリンキピア・マテマティカと数学の哲学 · 続きを見る »

ヒルベルト・プログラム

ヒルベルト・プログラムとは、ダフィット・ヒルベルトによって提唱された、数学を形式化しようとする試みのことをいう。ヒルベルト計画とも呼ばれる。.

ヒルベルト・プログラムと形式主義 (数学) · ヒルベルト・プログラムと数学の哲学 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

ピタゴラスの定理と形式主義 (数学) · ピタゴラスの定理と数学の哲学 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

ニコラ・ブルバキと形式主義 (数学) · ニコラ・ブルバキと数学の哲学 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

ダフィット・ヒルベルトと形式主義 (数学) · ダフィット・ヒルベルトと数学の哲学 · 続きを見る »

アルフレト・タルスキ

アルフレト・タルスキ(Alfred Tarski, 1901年1月14日 - 1983年10月26日)はポーランドおよびアメリカの数学者・論理学者。彼の生年を1902年とする記述も散見されるが、これは誤りである。 アリストテレス、クルト・ゲーデル、ゴットロープ・フレーゲとともに、「四人の偉大な論理学者」の一人として数えられる。また、彼の名前は「バナッハ=タルスキーの定理」などで知られる。.

アルフレト・タルスキと形式主義 (数学) · アルフレト・タルスキと数学の哲学 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

ゲーデルの不完全性定理と形式主義 (数学) · ゲーデルの不完全性定理と数学の哲学 · 続きを見る »

ソーンダース・マックレーン

ーンダース・マックレーン ソーンダース・マックレーン(Saunders Mac Lane, 1909年8月4日 - 2005年4月14日)はアメリカの数学者。 コネチカット州タフトヴィル生まれ。ゲッティンゲン大学にてパウル・ベルナイスに師事し、1934年に博士号を取得。1947年シカゴ大学教授に就任し、1982年同大学名誉教授。また、アメリカ数学協会会長(1951年-1952年)、アメリカ数学会会長(1973年-1974年)を歴任した。2005年、サンフランシスコにて没。 サミュエル・アイレンベルグと共に圏論を創設したことで知られる。自ら著した“Categories for the Working Mathematician”(日本語訳タイトル『圏論の基礎』)は圏論に関する基礎的なテキストとなっている。.

ソーンダース・マックレーンと形式主義 (数学) · ソーンダース・マックレーンと数学の哲学 · 続きを見る »

哲学

哲学(てつがく、Φιλοσοφία、philosophia、philosophy、philosophie、Philosophie)は、語義的には「愛智」を意味する学問的活動である。日本語辞典の広辞苑では、次のように説明している。 観念論的な形而上学に対して、唯物論的な形而上学もある。諸科学が分化独立した現在では、哲学は学問とされることが多いが、科学とされる場合哲学は「自然および社会,人間の思考,その知識獲得の過程にかんする一般的法則を研究する科学」である。出典は、青木書店『哲学事典』。もある。.

哲学と形式主義 (数学) · 哲学と数学の哲学 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

形式主義 (数学)と算術 · 数学の哲学と算術 · 続きを見る »

真理

真理(しんり、ἀλήθεια、veritas、truth、vérité、Wahrheit)とは、確実な根拠によって本当であると認められたこと。ありのまま誤りなく認識されたことのあり方。真実とも。 真理は、現実や事実と異なり、妨害・障害としての虚偽・誤謬を対義語としており、露わさ、明らかさ、隠れなさに重点がある。そのものありのままであり、あらわであり、その本質が覆われていない、という意義に関しては、哲学的には本質主義や同一性とも関わりが深い。西欧哲学において真理論は論理学や認識論においてとりわけ主題化される。 真理論の歴史は、古代ギリシアに始まる。人間を尺度とする相対的なものの見方に反論する形で、永遠性・普遍性を有する真理の概念が生まれた。このような絶対性を内実とする真理概念は独断主義を生み、これに対する防衛・反抗が懐疑主義を生んだ。そのどちらにも陥らず、確実な知識の基礎付けを求めて近代の認識論が始まり、その後、真理の担い手が思惟・観念・判断、命題、「事物」(羅:res、レス)等のいずれであるか、について議論がなされてきた。現代論理学では真理の担い手は命題であるとされ、真と偽を合わせて真理値という。論理学で、「Pは○か○でないかのいずれかである(○であり、かつ○でない、ということはない)」という形をした文は○の内容に関係なく正しいので、これは「形式的真理」と呼ばれ、思惟と思惟自身の一致と定義される。このような形式的な形相についてではなく、質料について真理が語られるときは「実体的真理」という。判断について真理が語られるときを「認識論的真理」といい、存在について真理が語られるときを「存在論的真理」という加藤信朗。現代の真理概念は様々な形で修正を受け、相対的な傾向を強めている。 論証する、つまり、言語による表現であることが真理に不可欠であり、哲学的にはロゴスとも関わりが深い。東洋には不言真如という概念もある。 人間を自由にするものとしての真理が説かれることもある。キリスト教では「真理はあなたたちを自由にする(ヨハネ8章32節) 」と説かれている。仏教では、人間を苦しみから解放する真理をあらわす「法」が説かれる。.

形式主義 (数学)と真理 · 数学の哲学と真理 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

形式主義 (数学)と自然数 · 数学の哲学と自然数 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

形式主義 (数学)と集合論 · 数学の哲学と集合論 · 続きを見る »

推論規則

推論規則(すいろんきそく、rule of inference, inference rule, transformation rule)とは、論理式から他の論理式を導く推論の規則である。 記号、公理、代入規則、推論規則によって理論を形式化したものを公理系という。 公理は記号だけで記述されるが、推論規則や代入規則はこれらの記号について述べているメタ言語で記述される。 恒真式 (トートロジー)から推論規則を導くと妥当性のある推論になる。.

形式主義 (数学)と推論規則 · 推論規則と数学の哲学 · 続きを見る »

構造主義

構造主義(こうぞうしゅぎ、)とは、狭義には1960年代に登場して発展していった20世紀の現代思想のひとつである。広義には、現代思想から拡張されて、あらゆる現象に対して、その現象に潜在する構造を抽出し、その構造によって現象を理解し、場合によっては制御するための方法論を指す語である。.

形式主義 (数学)と構造主義 · 数学の哲学と構造主義 · 続きを見る »

数(かず、すう、number)とは、.

形式主義 (数学)と数 · 数と数学の哲学 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

形式主義 (数学)と数学 · 数学と数学の哲学 · 続きを見る »

数学的直観主義

数学的直観主義(すうがくてきちょっかんしゅぎ)とは、数学の基礎を数学者の直観におく立場のことを指す。.

形式主義 (数学)と数学的直観主義 · 数学の哲学と数学的直観主義 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

形式主義 (数学)と数理論理学 · 数学の哲学と数理論理学 · 続きを見る »

上記のリストは以下の質問に答えます

形式主義 (数学)と数学の哲学の間の比較

数学の哲学が197を有している形式主義 (数学)は、31の関係を有しています。 彼らは一般的な23で持っているように、ジャカード指数は10.09%です = 23 / (31 + 197)。

参考文献

この記事では、形式主義 (数学)と数学の哲学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »