ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

弦理論と超弦理論

ショートカット: 違い類似点ジャカード類似性係数参考文献

弦理論と超弦理論の違い

弦理論 vs. 超弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。. ラビ-ヤウ空間 超弦理論(ちょうげんりろん、)は、物理学の理論、仮説の1つ。物質の基本的単位を、大きさが無限に小さな0次元の点粒子ではなく、1次元の拡がりをもつ弦であると考える弦理論に、超対称性という考えを加え、拡張したもの。超ひも理論、スーパーストリング理論とも呼ばれる。 宇宙の姿やその誕生のメカニズムを解き明かし、同時に原子、素粒子、クォークといった微小な物のさらにその先の世界を説明する理論の候補として、世界の先端物理学で活発に研究されている理論である。この理論は現在、理論的な矛盾を除去することには成功しているが、なお不完全な点を指摘する専門家もおり、また実験により検証することが困難であろうとみなされているため、物理学の定説となるまでには至っていない。.

弦理論と超弦理論間の類似点

弦理論と超弦理論は(ユニオンペディアに)共通で35ものを持っています: 南部陽一郎双対場の量子論一般相対性理論仮説弱い相互作用強い相互作用ミチオ・カクマイケル・グリーン (物理学者)ハドロンレオナルド・サスキンドボース粒子トゥーリオ・レッジェプランク長ディラトンフェルミ粒子ベータ関数エドワード・ウィッテンカルツァ=クライン理論ガブリエーレ・ヴェネツィアーノクォークグルーオンゲージ理論ジョン・シュワルツスピン角運動量タキオン理論相対性理論Dブレーン...超対称性重力重力子量子力学M理論 インデックスを展開 (5 もっと) »

南部陽一郎

南部 陽一郎(なんぶ よういちろう、1921年1月18日 - 2015年7月5日 産経新聞 2015年7月17日閲覧 大阪大学 2015年7月17日閲覧)は日本出身、アメリカ国籍の理論物理学者。シカゴ大学名誉教授、大阪市立大学名誉教授、大阪大学特別栄誉教授、立命館アジア太平洋大学アカデミック・アドバイザー。専門は素粒子理論。理学博士(東京大学 1952年)。 日本の福井県福井市出身。自宅が大阪府豊中市にあり、シカゴに在住していた。1970年に日本からアメリカ合衆国へ帰化した。.

南部陽一郎と弦理論 · 南部陽一郎と超弦理論 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

双対と弦理論 · 双対と超弦理論 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

場の量子論と弦理論 · 場の量子論と超弦理論 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

一般相対性理論と弦理論 · 一般相対性理論と超弦理論 · 続きを見る »

仮説

仮説(かせつ、hypothesis)とは、真偽はともかくとして、何らかの現象や法則性を説明するのに役立つ命題のこと。.

仮説と弦理論 · 仮説と超弦理論 · 続きを見る »

弦(げん)とは.

弦と弦理論 · 弦と超弦理論 · 続きを見る »

弱い相互作用

弱い相互作用(よわい そうごさよう、)とは、素粒子の間で作用する4つの基本相互作用の内の一つである。弱い核力、あるいは単に弱い力とも呼ばれる。この相互作用による効果として代表的なものにベータ崩壊がある。電磁相互作用と比較して、力が非常に弱いことからこの名がついた。.

弦理論と弱い相互作用 · 弱い相互作用と超弦理論 · 続きを見る »

強い相互作用

強い相互作用(つよいそうごさよう、Strong interaction)は、基本相互作用の一つである。ハドロン間の相互作用や、原子核内の各核子同士を結合している力(核力)を指し、標準模型においては量子色力学によって記述される。強い力、強い核力とも。その名の通り電磁相互作用に比べて約137倍の強さがある。 強い相互作用の理解は、歴史的には湯川秀樹による、パイ中間子の交換によって核子に働く核力の説明に始まるが、1970年代前半の量子色力学の成立によって、ゲージ理論として完成した。.

弦理論と強い相互作用 · 強い相互作用と超弦理論 · 続きを見る »

ミチオ・カク

ミチオ・カク(加來 道雄、Michio Kaku、1947年1月24日 - )は日系アメリカ人(3世)の理論物理学者、作家。専門は素粒子論、とくに超弦理論。.

ミチオ・カクと弦理論 · ミチオ・カクと超弦理論 · 続きを見る »

マイケル・グリーン (物理学者)

マイケル・ボリス・グリーン(Michael Boris Green、1946年5月22日 - )は、イギリスの物理学者で、弦理論研究者である。ケンブリッジ大学にて、応用数学および理論物理学の教授をつとめている。1967年ケンブリッジ大学にて学士号を取得後、1970年に同大学にて博士号を取得した。 弦理論の黎明期において理論の構築に貢献した。特に、1984年にジョン・シュワルツとともにタイプI超弦理論がアノマリーのない無矛盾な理論であることを示したことは、第1次ストリング革命のきっかけとなった。 米制作のドキュメンタリー番組「美しき大宇宙」(原題:)にも出演している。 1989年王立協会フェロー選出。2009年にスティーヴン・ホーキングからケンブリッジ大学のルーカス教授職を引き継ぎ、2015年までの6年間務めた。.

マイケル・グリーン (物理学者)と弦理論 · マイケル・グリーン (物理学者)と超弦理論 · 続きを見る »

ハドロン

ハドロン (hadron) は、素粒子標準模型において強い相互作用で結びついた複合粒子のグループである。 強粒子とも訳されるが、現代では素粒子物理学者がこの和名で呼ぶことはほとんどない。 この名称は、ギリシャ語の「強い」の意のἁδρόςに由来し、1962年にレフ・オクンによって付けられた。.

ハドロンと弦理論 · ハドロンと超弦理論 · 続きを見る »

レオナルド・サスキンド

レオナルド・サスキンド(Leonard Susskind、1940年 - )はアメリカの物理学者。素粒子物理学における弦理論の創始者の一人。.

レオナルド・サスキンドと弦理論 · レオナルド・サスキンドと超弦理論 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

ボース粒子と弦理論 · ボース粒子と超弦理論 · 続きを見る »

トゥーリオ・レッジェ

トゥーリオ・レッジェ(Tullio Regge、1931年7月11日 - 2014年10月23日)はイタリアの理論物理学者。1960年代の初め頃から素粒子物理学で流行したレッジェ仮説や、南部陽一郎らのハドロンのひもモデルを要請したスピンと質量の関係をプロットしたレッジェ軌道などで科学史に残る。 トリノに生まれた。トリノで物理学を学んだ後、アメリカに渡り、ロチェスター大学で学位を得る。1961年にトリノ大学の教授となる。1960年代から1970年代はプリンストン大学で研究した。トリノ工科大学教授などを務めた。1964年にハイネマン賞数理物理学部門、1987年Città di Como prize、1987年、アインシュタイン・メダル、1987年にセシル・パウエル・メダル、1996年ディラック・メダルを受賞している。1989年, 欧州議会の議員に選ばれた。 Category:イタリアの物理学者 Category:トリノ工科大学の教員 Category:トリノ大学の教員 Category:プリンストン高等研究所の人物 Category:トリノ出身の人物 Category:1931年生 Category:2014年没.

トゥーリオ・レッジェと弦理論 · トゥーリオ・レッジェと超弦理論 · 続きを見る »

プランク長

プランク長(プランクちょう、Planck length)は、長さのプランク単位である。記号 \ell_P で表す。コンプトン波長を \pi で割ったものとシュワルツシルト半径とが等しい長さとなる質量で定義される。このときの質量をプランク質量という。.

プランク長と弦理論 · プランク長と超弦理論 · 続きを見る »

ディラトン

ディラトン(英:dilaton)とは、超弦理論に登場する仮説上の粒子である。.

ディラトンと弦理論 · ディラトンと超弦理論 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

フェルミ粒子と弦理論 · フェルミ粒子と超弦理論 · 続きを見る »

ベータ関数

数学において、ベータ関数(ベータかんすう、beta function)とは、ルシャンドルの定義に従って第一種オイラー積分とも呼ばれる特殊関数である。.

ベータ関数と弦理論 · ベータ関数と超弦理論 · 続きを見る »

エドワード・ウィッテン

ドワード・ウィッテン(Edward Witten, 1951年8月26日 - )は超弦理論においてM理論を提唱した理論物理学者。現在はプリンストン高等研究所教授。 メリーランド州ボルチモア生まれ。父親は一般相対性理論の研究者で元シンシナティ大学教授のルイス・ウィッテン。当初はジャーナリストを志望し、ブランダイス大学時代は歴史学や言語学を専攻。米国雑誌『The Nation』や『THE NEW REPUBLIC』に寄稿する他、1972年の大統領選で大敗したジョージ・マクガヴァンの選挙運動に携わった。 ウィスコンシン大学マディソン校大学院で経済学を専攻するが中退し、1973年にプリンストン大学大学院で応用数学を専攻。後に物理学に移り、デビッド・グロスの下で1976年に博士号を取得した。 その後ハーヴァード大学のフェローなどを経て、1980年から1987年までプリンストン大学物理学科の教授を務めた。1995年に南カリフォルニア大学で開かれたスーパーストリング理論国際会議で、仮説M理論を発表し学会に衝撃を与える。1990年、数学に関する最高権威を有するフィールズ賞を受賞。 ネーサン・サイバーグとは友人で共同研究者。米制作ドキュメンタリー「美しき大宇宙」(原題:The Elegant Universe)に出演している。.

エドワード・ウィッテンと弦理論 · エドワード・ウィッテンと超弦理論 · 続きを見る »

カルツァ=クライン理論

ルツァ=クライン理論(カルツァ=クラインりろん、Kaluza-Klein theory、KK理論)は、重力と電磁気力を統一するために五次元以上の時空を仮定する理論である。理論物理学者のテオドール・カルツァが1921年に提唱し、1926年にオスカル・クラインが修正した。.

カルツァ=クライン理論と弦理論 · カルツァ=クライン理論と超弦理論 · 続きを見る »

ガブリエーレ・ヴェネツィアーノ

右 ガブリエーレ・ヴェネツィアーノ(Gabriele Veneziano, גבריאל ונציאנו‎、1942年9月7日生まれ)は、イタリアの物理学者である。1960年代後半、ひも理論の創始者のひとりとなった。 フィレンツェに生まれ、フィレンツェ大学、イスラエルのワイツマン研究所、マサチューセッツ工科大学で学んだ。1968年、ヨーロッパ素粒子物理学研究所(CERN)で研究中にオイラーのベータ関数が素粒子の相互作用を満足する性質を備えていることを発見した。1972年からワイツマン研究所の教授、1976年からCERNのスタッフとなった。.

ガブリエーレ・ヴェネツィアーノと弦理論 · ガブリエーレ・ヴェネツィアーノと超弦理論 · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

クォークと弦理論 · クォークと超弦理論 · 続きを見る »

グルーオン

ルーオン()とは、ハドロン内部で強い相互作用を伝える、スピン1のボース粒子である。質量は0で、電荷は中性。また、「色荷(カラー)」と呼ばれる量子数を持ち、その違いによって全部で8種類のグルーオンが存在する。膠着子(こうちゃくし)、糊粒子という呼び方もあるが、あまり使われない。 他のゲージ粒子と違い、通常の温度・密度ではクォーク同様単独で取り出すことは不可能であるとされる。 また、グルーオン自身が色荷を持つため、グルーオンどうしにも相互作用が働く。これは電磁相互作用を伝える光子にはない性質である。この性質により、グルーオンのみで構成された粒子、グルーボールの存在が、格子QCD及び超弦理論によって示唆されている。.

グルーオンと弦理論 · グルーオンと超弦理論 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

ゲージ理論と弦理論 · ゲージ理論と超弦理論 · 続きを見る »

ジョン・シュワルツ

ョン・ヘンリー・シュワルツ(John Henry Schwarz、1941年11月22日 - )は、アメリカの理論物理学者。弦理論の黎明期において理論の構築に貢献した。特に、1984年にマイケル・グリーンとともにタイプI超弦理論がアノマリーのない無矛盾な理論であることを示したことは、第1次ストリング革命のきっかけとなった。 カリフォルニア工科大学教授。.

ジョン・シュワルツと弦理論 · ジョン・シュワルツと超弦理論 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

スピン角運動量と弦理論 · スピン角運動量と超弦理論 · 続きを見る »

タキオン

タキオン(tachyon)は、超光速で動くと仮定されている粒子である。タキオンの存在は特殊相対性理論に反しないが、場の理論において否定的であり、現在においても存在は確認されていない。語源はギリシャ語の「ταχύς(速い)」に由来する。 SF作品中で超光速通信の手段として用いられたり、疑似科学の世界でタキオングッズとして「製品化」されたりしている。.

タキオンと弦理論 · タキオンと超弦理論 · 続きを見る »

理論

論(りろん、theory, théorie, Theorie)とは対象となる事象の原因と結果の関係を説明する一般的な論述である。自然科学、人文科学、社会科学などの科学または学問において用いられている。.

弦理論と理論 · 理論と超弦理論 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

弦理論と相対性理論 · 相対性理論と超弦理論 · 続きを見る »

Dブレーン

Dブレーンとは弦理論において、特殊な条件下で存在するとされる物体である。 弦理論におけるブレーン(membrane=膜)は、弦なども含む、広がりを持った物理的対象全般を表す語である。Dブレーンもまた弦と同様に、伸縮や振動などの運動を行う。通常、Dブレーンは弦に比べて非常に大きいものとして記述されるが、素粒子サイズのものを考えることも可能である。例えばハドロン物理学をブレーン上の物理現象として記述するホログラフィックQCDでは、陽子もまた微小なDブレーンとして記述される。 DブレーンのDは、後述するディリクレ境界条件(Dirichlet)に由来する。DブレーンはDai、Leighおよびジョセフ・ポルチンスキー、そしてそれとは独立にHoravaによって1989年に発見された。.

Dブレーンと弦理論 · Dブレーンと超弦理論 · 続きを見る »

超対称性

超対称性(ちょうたいしょうせい,supersymmetry,SUSY)はボソンとフェルミオンの入れ替えに対応する対称性である。この対称性を取り入れた理論は超対称性理論などのように呼ばれる。また、超対称性粒子の一部はダークマターの候補の一つである。2013年1月現在、超対称性粒子は未発見である。.

弦理論と超対称性 · 超対称性と超弦理論 · 続きを見る »

重力

重力(じゅうりょく)とは、.

弦理論と重力 · 超弦理論と重力 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

弦理論と重力子 · 超弦理論と重力子 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

弦理論と量子力学 · 超弦理論と量子力学 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

M理論と弦理論 · M理論と超弦理論 · 続きを見る »

上記のリストは以下の質問に答えます

弦理論と超弦理論の間の比較

超弦理論が96を有している弦理論は、101の関係を有しています。 彼らは一般的な35で持っているように、ジャカード指数は17.77%です = 35 / (101 + 96)。

参考文献

この記事では、弦理論と超弦理論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »