ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

弦理論と束縛状態

ショートカット: 違い類似点ジャカード類似性係数参考文献

弦理論と束縛状態の違い

弦理論 vs. 束縛状態

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。. 束縛状態(そくばくじょうたい、Bound state(s))とは、電子などがポテンシャルなどに束縛された状態のこと。束縛されるものは電子だけとは限らない。また、アンダーソン局在のような局在状態とは異なる。但し、束縛状態も空間内で、ポテンシャルなどによって束縛された状態であり、空間的に局在した状態となっている。 束縛状態の例としては、不純物準位の電子(半導体の不純物準位など←比較的束縛は弱い)や、原子の内殻電子も原子核に強く束縛されたものである。.

弦理論と束縛状態間の類似点

弦理論と束縛状態は(ユニオンペディアに)共通で2ものを持っています: 量子力学電子

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

弦理論と量子力学 · 束縛状態と量子力学 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

弦理論と電子 · 束縛状態と電子 · 続きを見る »

上記のリストは以下の質問に答えます

弦理論と束縛状態の間の比較

束縛状態が6を有している弦理論は、101の関係を有しています。 彼らは一般的な2で持っているように、ジャカード指数は1.87%です = 2 / (101 + 6)。

参考文献

この記事では、弦理論と束縛状態との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »