ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

常磁性

索引 常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

63 関係: 印加反強磁性反磁性双極子不対電子強磁性位置エネルギー価電子化学ポテンシャルナトリウムマグネシウムネール温度ネオジムバンド理論バンド構造ランタノイドラジカル (化学)リチウムトルクパウリ常磁性フェルミエネルギーフェルミ準位分子アルミニウムガドリニウムキュリー定数キュリー温度スピン角運動量セシウムタングステンサマリウム共鳴理論磁場磁化磁化率磁気モーメント磁性磁性流体結晶構造D軌道遷移元素角運動量超常磁性閉殻重ね合わせ量子力学自由電子金属...酸素英語電子電子軌道電子配置電子殻電気伝導体P軌道S軌道核磁気共鳴画像法比例永久磁石波動関数 インデックスを展開 (13 もっと) »

印加

印加(いんか)とは、電気回路に電源や別の回路から電圧や信号を与える事を意味し、「電圧を印加する」「信号を印加する」という様に使われる。またこの時、印加された電圧、電流はそれぞれ印加電圧、印加電流と呼ばれる。 電圧を印加した瞬間に流れる大電流を突入電流(インラッシュ電流)という。電動機や変圧器など、巻線機器ではこうした突入電流を考慮したうえで機器の設計および保護継電器の整定を行う。 電圧を印加する際には感電災害や機器の破損を防止するため、作業員を当該機器から退避させたこと、配線が正確になされていることを確認しなければならない。.

新しい!!: 常磁性と印加 · 続きを見る »

反強磁性

反強磁性(Antiferromagnetic )とは、隣り合うスピンがそれぞれ反対方向を向いて整列し、全体として磁気モーメントを持たない物質の磁性を指す。金属イオンの半数ずつのスピンが互いに逆方向となるため反強磁性を示す。 代表的な物質としては、絶縁体では酸化マンガン(MnO)や酸化ニッケル(NiO)などが挙げられる。なお、これら酸化物における相互作用は超交換相互作用によって説明されるが、スピンを逆向きに揃えようとする反強磁性相互作用は超交換相互作用のみに由来するものではなく、強磁性を説明した「ハイゼンベルクの(直接)交換相互作用」においても、磁性軌道間に重なりがあればその係数は負となり、反強磁性相互作用をもたらす。 強磁性体と同様に、反強磁性もその性質を示すのは低温に限られる。熱揺らぎによるスピンをランダムにしようとする効果(=熱によるエントロピーの増大)のため、ある温度以上になるとスピンはそれぞれ無秩序な方向を向いて整列しなくなり、物質は常磁性を示すようになる。この転移温度をネール温度(Néel Temperature)と呼ぶ。ネール温度以上での磁化率は通常は近似的にキュリー・ワイスの法則で表すことが出来る。 なお、反磁性 (diamagnetism) は反強磁性とは全く違う現象である。.

新しい!!: 常磁性と反強磁性 · 続きを見る »

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

新しい!!: 常磁性と反磁性 · 続きを見る »

双極子

双極子(そうきょくし、)とは、一対の正負の同じ大きさの単極子をわずかに離れた位置に置いたものである。和訳せずダイポールと呼ばれることもある。 双極子は、負から正の単極子への方向ベクトルとその大きさとの積で特徴づけられる。このベクトルを双極子モーメント()あるいは双極子能率といい、このベクトルの方向との関係により指向性を持つ場となる。 一般に双極子のポテンシャルφは単極子のそれφmonopole の空間についての偏微分で表される。.

新しい!!: 常磁性と双極子 · 続きを見る »

不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

新しい!!: 常磁性と不対電子 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 常磁性と強磁性 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: 常磁性と位置エネルギー · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: 常磁性と価電子 · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

新しい!!: 常磁性と化学ポテンシャル · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 常磁性とナトリウム · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: 常磁性とマグネシウム · 続きを見る »

ネール温度

ネール温度(ネールおんど、Néel temperature, TN)とは、反強磁性体が常磁性へと転移する温度である。即ち、物質中の部分格子が有限の自発磁化を示す温度である。反強磁性体やその変形であるフェリ磁性の理論的研究を行ったルイ・ネールに由来する。ネールはこの磁性分野の研究における貢献で1970年にノーベル物理学賞を受賞した。ネール温度以上では物質は常磁性体として振る舞い、この温度以下では秩序相の発達と共に徐々に容易軸方向の磁化率は低下する。通常の反強磁性体であれば、困難軸方向の磁化はネール温度以下では温度依存が少なく、ほぼ定数と見なせる状態となる。 ネール温度は強磁性体が常磁性体へと転移するキュリー温度 TCに類似している。反強磁性体とよく似た磁気構造を持つフェリ磁性や弱強磁性の場合の転移温度に対してもこの語は用いられるが、これらの系においては転移点以下で自発磁化を示すことから、強磁性体と同じくキュリー温度の語を用いる場合もある。.

新しい!!: 常磁性とネール温度 · 続きを見る »

ネオジム

ネオジム(neodymium、Neodym)は原子番号60の金属元素。元素記号は Nd。希土類元素の一つで、ランタノイドにも属する。 日本語の「ネオジム」はドイツ語の Neodym の字訳である。製品名等で「ネオジウム」「ネオジューム」等の呼称も用いられることがあり、用法の正誤については議論がある。.

新しい!!: 常磁性とネオジム · 続きを見る »

バンド理論

固体物理学における固体のバンド理論(バンドりろん、band theory)または帯理論とは、結晶などの固体物質中に分布する電子の量子力学的なエネルギーレベルに関する理論を言う。1920年代後半にフェリックス・ブロッホ、ルドルフ・パイエルス、レオン・ブリルアンらによって確立された。.

新しい!!: 常磁性とバンド理論 · 続きを見る »

バンド構造

バンド構造(バンドこうぞう、band structure)は、ポテンシャルや誘電率などの周期的構造によって生じる、波動(電子や電磁波など)に対する分散関係のことである。; 電子バンド構造; フォトニックバンド構造 他にも、フォノニックバンド構造やプラズモニックバンド構造などがある。 ---- 電子バンド構造(でんしバンドこうぞう、electronic band structure)は、結晶などの固体の中で、波として振舞う電子(価電子)に対するバンド構造のことである。.

新しい!!: 常磁性とバンド構造 · 続きを見る »

ランタノイド

ランタノイド (lanthanoid) とは、原子番号57から71、すなわちランタンからルテチウムまでの15の元素の総称Shriver & Atkins (2001), p.12。。 「ランタン (lanthan)」+「-もどき (-oid)」という呼称からも分かるように、各々の性質がよく似ていることで知られる。 スカンジウム・イットリウムと共に希土類元素に分類される。周期表においてはアクチノイドとともに本体の表の下に脚注のような形で配置されるのが一般的である。.

新しい!!: 常磁性とランタノイド · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 常磁性とラジカル (化学) · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: 常磁性とリチウム · 続きを見る »

トルク

トルク(torque)とは、力学において、ある固定された回転軸を中心にはたらく、回転軸のまわりの力のモーメントである。一般的には「ねじりの強さ」として表される。力矩、ねじりモーメントとも言う。.

新しい!!: 常磁性とトルク · 続きを見る »

パウリ常磁性

パウリ常磁性(パウリじょうじせい、Pauli paramagnetism)とは自由電子系における常磁性の一種で、キュリー常磁性に比べ磁化率は小さく、温度変化も少ない。磁場をかけることで、磁場に平行なスピンを持つ電子の数が反平行なものより増加することで発生する。パウリ常磁性の磁化率の大きさは4\pi\times10^程度である。 電子間相互作用がないと考えた場合の絶対零度での磁化率は ここに \mu_ はボーア磁子、および\rho(\epsilon_) はフェルミエネルギーにおける電子の状態密度。 金属中の自由電子はフェルミ縮退を起こしている。そのため古典統計力学で考えた場合と異なり、磁場をかけた場合に電子がそのスピン状態を変えようとしても、変わる先の状態がすでに占有されているのでスピン状態が変わることができない(パウリの原理)。よって磁性に影響するのはフェルミ面付近の電子だけになってしまい、磁化率は古典粒子として考えた場合よりもずっと小さい値になる。また同様の原理により、フェルミ縮退している物質では、フェルミ縮退をしなくなる温度であるフェルミ温度程度までは温度によらない磁化率を示す。 Category:磁気 Category:固体物理学.

新しい!!: 常磁性とパウリ常磁性 · 続きを見る »

フェルミエネルギー

量子力学や物性物理学においてフェルミエネルギー (Fermi energy)あるいフェルミ準位(Fermi level)とは、相互作用のないフェルミ粒子系(理想フェルミ気体)の絶対零度での化学ポテンシャルのことであり、E_Fと表される。 また理想フェルミ気体の化学ポテンシャルを、絶対零度では「フェルミエネルギー」、有限温度では「フェルミ準位」と区別して呼ぶこともある。このように定義した場合、絶対零度でフェルミ準位とフェルミエネルギーは等しくなる。.

新しい!!: 常磁性とフェルミエネルギー · 続きを見る »

フェルミ準位

フェルミ準位とは電子の全化学ポテンシャル(または電子の電気化学ポテンシャル)のことで、通常 または と表記される。物質のフェルミ準位は熱力学的な量であり、その意味は1つの電子を物質に与えるのに必要な熱力学的仕事である(電子を取り除くのに必要な仕事は考慮していない)。 バンド構造が電子的性質の決定にどのように関係しているか、電子回路において電圧と電荷の流れがどのように関係しているか、といったフェルミ準位の正確な理解は、固体物理学の理解に本質的である。固体のエネルギー準位を解析するために固体物理学で用いられるバンド構造理論においてフェルミ準位は、電子の仮想的なエネルギー準位だと考えることができ、熱力学的平衡においてこのエネルギー準位は「いかなる時間でも占有されている確率が50%」である。バンドエネルギー準位に関連するフェルミ準位の位置は、電子特性を決める重要な因子である。フェルミ準位は現実のエネルギー準位に必ずしも対応しておらず(絶縁体でのフェルミ準位はバンドギャップの中にある)、バンド構造の存在も必要としない。それにも関わらず、フェルミ準位は厳密に定義された熱力学的な量であり、フェルミ準位の差は電圧計で簡単に測定することができる。.

新しい!!: 常磁性とフェルミ準位 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 常磁性と分子 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 常磁性とアルミニウム · 続きを見る »

ガドリニウム

ドリニウム (gadolinium) は原子番号64の元素。元素記号は Gd。希土類元素の一つ(ランタノイドにも属す)。.

新しい!!: 常磁性とガドリニウム · 続きを見る »

キュリー定数

ュリー定数(―ていすう)は、常磁性体の磁化率のキュリーの法則や強磁性体、反強磁性体のキュリー・ワイスの法則に表れる物質に固有な物性値である。 ここで または局在磁気モーメントの大きさの二乗平均\langle m \rangle.

新しい!!: 常磁性とキュリー定数 · 続きを見る »

キュリー温度

ュリー温度(―おんど、Curie temperature、記号T_\mathrm)とは物理学や物質科学において、強磁性体が常磁性体に変化する転移温度、もしくは強誘電体が常誘電体に変化する転移温度である。キュリー点(―てん、Curie point)とも呼ばれる。ピエール・キュリーより名づけられた。.

新しい!!: 常磁性とキュリー温度 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 常磁性とスピン角運動量 · 続きを見る »

セシウム

ウム (caesium, caesium, cesium) は原子番号55の元素。元素記号は、「灰青色の」を意味するラテン語の caesius カエシウスより Cs。軟らかく黄色がかった銀色をしたアルカリ金属である。融点は28 で、常温付近で液体状態をとる五つの金属元素のうちの一つである。 セシウムの化学的・物理的性質は同じくアルカリ金属のルビジウムやカリウムと似ていて、水と−116 で反応するほど反応性に富み、自然発火する。安定同位体を持つ元素の中で、最小の電気陰性度を持つ。セシウムの安定同位体はセシウム133のみである。セシウム資源となる代表的な鉱物はポルックス石である。 ウランの代表的な核分裂生成物として、ストロンチウム90と共にセシウム135、セシウム137が、また原子炉内の反応によってセシウム134が生成される。この中でセシウム137は比較的多量に発生しベータ線を出し半減期も約30年と長く、放射性セシウム(放射性同位体)として、核兵器の使用(実験)による死の灰(黒い雨)や原発事故時の「放射能の雨」などの放射性降下物として環境中の存在や残留が問題となる。 2人のドイツ人化学者、ロベルト・ブンゼンとグスタフ・キルヒホフは、1860年に当時の新技術であるを用いて鉱泉からセシウムを発見した。初めての応用先は真空管や光電素子のであった。1967年、セシウム133の発光スペクトルの比振動数が国際単位系の秒の定義に選ばれた。それ以来、セシウムは原子時計として広く使われている。 1990年代以降のセシウムの最大の応用先は、ギ酸セシウムを使ったである。エレクトロニクスや化学の分野でもさまざまな形で応用されている。放射性同位体であるセシウム137は約30年の半減期を持ち、医療技術、工業用計量器、水文学などに応用されている。.

新しい!!: 常磁性とセシウム · 続きを見る »

タングステン

タングステンまたはウォルフラム(Wolfram 、wolframium、tungsten )は原子番号74の元素。元素記号は W。金属元素の一つ。 原子量は183.84である。銀灰色の非常に硬く重い金属で、クロム族元素に属する。化学的に安定で、その結晶は体心立方構造 (BCC) を持つ。融点は で、沸点は 。比重は19.3。希少金属の一つである。 ため、鍛造、伸線、または押出により加工できる。一般的なタングステン製品は焼結で生産される。 タングステンはすべての金属中で融点が最も高く(3422°C)、1650°C以上の領域で蒸気圧が最も低く、引っ張り強度は最強である。炭素はタングステンより高温でも固体であるが、大気圧では昇華してしまい融点はないため、タングステンが最も融点の高い元素となる。また、タングステンは最も熱膨張係数が小さい金属でもある。高い融点と引っ張り強度、小さい熱膨張係数は、タングステン結晶において5d軌道の電子が強い共有結合を形成していることによってもたらされている。 -->.

新しい!!: 常磁性とタングステン · 続きを見る »

サマリウム

マリウム(samarium)は原子番号62の元素。元素記号は Sm。希土類元素の一つ(ランタノイドにも属す)。単体は灰白色の軟らかい金属であり、空気中では徐々に酸化されて表面に酸化被膜を形成する。標準状態における安定構造は三方晶系。希土類元素の中では珍しく+2価の酸化状態を取る。最も安定な酸化物はSmOであり、常温で常磁性を示す。ハロゲンやホウ素、酸素族元素、窒素族元素などと化合物を形成し、多くの金属元素と合金を形成する。天然に存在するサマリウムは4つの安定同位体および3つの放射性同位体からなり、128 Bq/gの放射能を有する。 1879年にポール・ボアボードランによってサマルスキー石から発見され、鉱物名にちなんでサマリウムと名付けられた。サマルスキー石の鉱物名は鉱物の発見者であるワシーリー・サマルスキー=ビホヴェッツに由来しており、サマリウムは人名が元素名の由来となった初めての元素である。他の軽ランタノイドと共にモナズ石(モナザイト)に含まれ、地殻中における存在度は40番目。主にサマリウムコバルト磁石や触媒、化学試薬として利用され、放射性同位体は放射性医薬品などにも利用される。サマリウムは人体内における生物学的な役割を持たないが、溶解性のサマリウム塩類はわずかに毒性を示す。.

新しい!!: 常磁性とサマリウム · 続きを見る »

共鳴理論

二酸化窒素の寄与構造の内の2種類 化学における共鳴理論(きょうめいりろん)とは、量子力学的共鳴の概念により、共有結合を説明しようとする理論である。.

新しい!!: 常磁性と共鳴理論 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 常磁性と磁場 · 続きを見る »

磁化

磁化(じか、magnetization)とは、磁性体に外部磁場をかけたときに、その磁性体が磁気的に分極して磁石となる現象のこと。また、磁性体の磁化の程度を表す物理量も磁化と呼ぶ。磁気分極(magnetic polarization)とも呼ばれる。 強磁性体は磁場をかけて磁化させた後に磁場を取り除いた後も分極が残り永久磁石となる残留磁化と呼ばれる現象があるが、これも磁化と呼ぶ場合がある。.

新しい!!: 常磁性と磁化 · 続きを見る »

磁化率

磁化率(じかりつ、英語:magnetic susceptibility)とは、磁気分極の起こりやすさを示す物性値である。帯磁率、磁気感受率などとも言う。.

新しい!!: 常磁性と磁化率 · 続きを見る »

磁気モーメント

磁気モーメント(じきモーメント、)あるいは磁気能率とは、磁石の強さ(磁力の大きさ)とその向きを表すベクトル量である。外部にある磁場からもたらされる磁石にかかるねじる方向に働く力のベクトル量を指す。ループ状の電流や磁石、電子、分子、惑星などもそれぞれ磁気モーメントを持っている。 磁気モーメントは強さと方向を持ったベクトルと考えることができる。磁気モーメントの方向は磁石のS極からN極へ向いている。磁石がつくる磁場は磁気モーメントに比例する。正確には「磁気モーメント」とは一般的な磁場をしたときの1次項が生成する磁気双極子モーメントの系を言う。物体の磁場の双極子成分は磁気双極子モーメントの方向について対称であり、物体からの距離の −3 乗に比例して減少していく。 磁気モーメントは周囲に磁束を作る。 対になる磁極の強さを ±m とし、負極から正極を指すベクトルを d とする。磁気モーメント m はモーメントの名のとおり、m と d の積である。 磁力は電荷が移動することで発生する。回転する電荷は中心に位置する磁気モーメントと等価であり、その磁気モーメントは電荷のもつ角運動量と比例関係にある。.

新しい!!: 常磁性と磁気モーメント · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 常磁性と磁性 · 続きを見る »

磁性流体

磁性流体(じせいりゅうたい, Magnetorheological fluid, Magnetic Fluid, Ferrofluid)あるいはMR流体とは、流体でありながら、磁性を帯び、砂鉄のように磁石に吸い寄せられる性質を持つ機能性流体(smart fluid)の一つである。.

新しい!!: 常磁性と磁性流体 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: 常磁性と結晶構造 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 常磁性と熱 · 続きを見る »

D軌道

配位子場によるd軌道の分裂 d軌道(ディーきどう)とは、原子を構成している電子軌道の1種である。 方位量子数は2であり、M殻以降の電子殻(3以上の主量子数)についてdxy軌道、dyz軌道、dzx軌道、dx2-y2軌道、dz2軌道という5つの異なる配位の軌道が存在する。各電子殻(主量子数)のd軌道は主量子数の大きさから「3d軌道」(M殻)、「4d軌道」(N殻)、、、のように呼ばれ、ひとつの電子殻(主量子数)のd軌道にはスピン角運動量の自由度と合わせて最大で10個の電子が存在する。 d軌道のdは「diffuse」に由来し、電子配置や軌道の変化分裂によるスペクトルの放散、広がりを持つことから意味づけられた。.

新しい!!: 常磁性とD軌道 · 続きを見る »

遷移元素

遷移元素(せんいげんそ、transition element)とは、周期表で第3族元素から第11族元素の間に存在する元素の総称である IUPAC.

新しい!!: 常磁性と遷移元素 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: 常磁性と角運動量 · 続きを見る »

超常磁性

超常磁性(ちょうじょうじせい)は強磁性体やフェリ磁性体のナノ粒子に現れる。磁性ナノ粒子では磁化の向きが温度の影響でランダムに反転しうる。この反転が起こるまでの時間をネール緩和時間という。外場の無い状態で、磁性ナノ粒子の磁化測定時間がネール緩和時間よりもずっと長い時、磁化は平均してゼロであるように見える。この状態を超常磁性という。超常磁性体は、外場によって磁化できる点で常磁性体と似ているが、その磁気感受率は常磁性体よりもずっと大きい。.

新しい!!: 常磁性と超常磁性 · 続きを見る »

閉殻

閉殻 (へいかく、closed shell)とは、原子の最外殻に最大数の電子が入っている状態のことである。.

新しい!!: 常磁性と閉殻 · 続きを見る »

重ね合わせ

重ね合わせ(かさねあわせ、superposition)は、量子力学の基本的な性質である。.

新しい!!: 常磁性と重ね合わせ · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 常磁性と量子力学 · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

新しい!!: 常磁性と自由電子 · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 常磁性と金 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 常磁性と金属 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 常磁性と酸素 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 常磁性と英語 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 常磁性と電子 · 続きを見る »

電子軌道

軌道はエネルギーの固有関数である。 電子軌道(でんしきどう、)とは、電子の状態を表す、座標表示での波動関数のことを指す。電子軌道は単に「軌道」と呼ばれることもある。.

新しい!!: 常磁性と電子軌道 · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: 常磁性と電子配置 · 続きを見る »

電子殻

電子殻(でんしかく、electron shell)は、原子構造の模型において、原子核を取り巻く電子軌道の集まりをいう。言わば電子の収容場所のことで、それにいかに電子が入っているかを示すのが電子配置である。.

新しい!!: 常磁性と電子殻 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: 常磁性と電気伝導体 · 続きを見る »

P軌道

p軌道の角度依存、赤は正、青は負の符号を示している p軌道(ピーきどう)とは、原子を構成している亜鈴状の電子の軌道のひとつである。 方位量子数は1で、L殻以降の電子殻(2以上の主量子数)についてpx,py,pzという異なる配位の3つの軌道が存在する。各電子殻(主量子数)のp軌道は主量子数の大きさから「2p軌道」(L殻)、「3p軌道」(M殻)のように呼ばれ、ひとつの電子殻(主量子数)のp軌道にはスピン角運動量の自由度と合わせて最大で6つの電子が存在する。s軌道の波動関数は球対称だが、3つのp軌道はそれぞれx軸、y軸、z軸に対する軸対称な波動関数をしている。 p軌道のpは「principal」に由来し、ほぼすべての元素で観測されること、また励起pから基底sへの遷移スペクトル強度が大きいことから、主要な、第一の、と意味づけられた。.

新しい!!: 常磁性とP軌道 · 続きを見る »

S軌道

s軌道の角度依存 s軌道(エスきどう)とは、原子を構成している電子の軌道の1つ。 方位量子数は0であり、全ての電子殻(主量子数)について球状の一つの軌道のみが存在する。各電子殻(主量子数)のs軌道は主量子数の大きさから「1s軌道」(K殻)、「2s軌道」(L殻)、、、のように呼ばれ、1つのs軌道にはスピン角運動量の自由度と合わせて最大で2つの電子が存在する。 例えば基底状態の水素原子は1s軌道に1個の電子が存在しており、ヘリウム原子は1s軌道に2個の電子を取って閉殻構造となっている。s軌道の電子はSブロック元素の物性に関わっている。 s軌道のsはsharpに由来する。ナトリウムに代表される(s軌道に電子を持つ)元素のスペクトルが鋭かったことから、sharp(鋭い)の頭文字が当てられた。.

新しい!!: 常磁性とS軌道 · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

新しい!!: 常磁性と核磁気共鳴画像法 · 続きを見る »

比例

比例(ひれい、proportionality)とは、変数を用いて書かれる二つの量に対し一方が他方の定数倍であるような関係の事である。.

新しい!!: 常磁性と比例 · 続きを見る »

永久磁石

永久磁石(えいきゅうじしゃく、permanent magnet)とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことである。強磁性ないしはフェリ磁性を示す物体であってヒステリシスが大きく常温での減磁が少ないものを磁化して用いる。永久磁石材料に関するJIS規格としてJIS C2502、その試験法に関する規格としてJIS C2501が存在する。 実例としてはアルニコ磁石、フェライト磁石、ネオジム磁石などが永久磁石である。これに対して、電磁石や外部磁場による磁化を受けた時にしか磁石としての性質を持たない軟鉄などは一時磁石と呼ばれる。.

新しい!!: 常磁性と永久磁石 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: 常磁性と波動関数 · 続きを見る »

ここにリダイレクトされます:

常磁性体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »