ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

工学と電気工学

ショートカット: 違い類似点ジャカード類似性係数参考文献

工学と電気工学の違い

工学 vs. 電気工学

工学(こうがく、engineering)とは、. 電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

工学と電気工学間の類似点

工学と電気工学は(ユニオンペディアに)共通で36ものを持っています: 半導体工学信号 (電気工学)心臓ペースメーカー医用生体工学マイケル・ファラデーハインリヒ・ヘルツメカトロニクストランジスタパワーエレクトロニクス制御工学アレッサンドロ・ボルタウィリアム・ギルバート (物理学者)エネルギーゲオルク・オームコンピュータシミュレーションジェームズ・クラーク・マクスウェルソフトウェア工学真空管無線工学物理学発電EDA (半導体)計算機工学航空機配電電力電子工学電気電気学会...集積回路材料工学機械工学情報情報工学数学 インデックスを展開 (6 もっと) »

半導体工学

半導体工学(はんどうたいこうがく、semiconductor engineering)は、半導体素子の設計・製造、寿命などの性能評価、半導体を利用した計測などを取り扱う工学である。下記のように多様な技術が関係する。.

半導体工学と工学 · 半導体工学と電気工学 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

信号 (電気工学)と工学 · 信号 (電気工学)と電気工学 · 続きを見る »

心臓ペースメーカー

心臓ペースメーカー(米GUIDANT社製) 心臓ペースメーカー(しんぞうペースメーカー、)は、心筋に電気刺激を与えることで必要な心収縮を発生させる医療機器である。電気パルスの生成装置である本体と、生成した電気パルスを心筋に伝達するための導線から構成される。前者はペーサーまたはパルスジェネレーターとも呼称し、後者はリードまたは電極と呼称される。心臓ペースメーカーは狭義には本体のみを指し、広義には本体とリードを含むシステム全体を指す。.

工学と心臓ペースメーカー · 心臓ペースメーカーと電気工学 · 続きを見る »

医用生体工学

医用生体工学(いようせいたいこうがく)、または、生体医工学(せいたいいこうがく、英語:biomedical engineering)は、医学と工学の領域を融合した学問分野である。医用生体工学と同義、または、これに含まれる学問の名称として、医用電子工学、医療工学などがある。医用生体工学を医用工学と生体工学に大別する分類方法もあるが、同義として扱われることも多い。.

医用生体工学と工学 · 医用生体工学と電気工学 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

マイケル・ファラデーと工学 · マイケル・ファラデーと電気工学 · 続きを見る »

ハインリヒ・ヘルツ

ハインリヒ・ルドルフ・ヘルツ(Heinrich Rudolf Hertz, 1857年2月22日 - 1894年1月1日)は、ドイツの物理学者。マックスウェルの電磁気理論をさらに明確化し発展させた。1888年に電磁波の放射の存在を、それを生成・検出する機械の構築によって初めて実証した。.

ハインリヒ・ヘルツと工学 · ハインリヒ・ヘルツと電気工学 · 続きを見る »

メカトロニクス

メカトロニクス(英語:mechatronics)とは、機械工学、電気工学、電子工学、情報工学の知識・技術を融合させることにより、従来手法を越える新たな工学的解を生み出す学問・技術分野をさす。.

メカトロニクスと工学 · メカトロニクスと電気工学 · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

トランジスタと工学 · トランジスタと電気工学 · 続きを見る »

パワーエレクトロニクス

パワーエレクトロニクス(英語:power electronics)は、電力用半導体素子を用いた電力変換、電力開閉に関する技術を扱う工学である。 広義では、電力変換と制御を中心とした応用システム全般の技術とも言える。 電力変換の基本となる整流回路は1897年にドイツの物理学者であるレーオ・グレーツによって考案された(グレーツ回路)。1957年、ゼネラル・エレクトリック社によって開発されたサイリスタの登場以後、それまでの回転機や磁気、液体、気体などを用いたものと変わって、固体の半導体素子による電力変換、電力開閉技術が発展した。1969年、ゼネラル・エレクトリックのハーバート・ストームがIEEE(アメリカの電気電子学会)の雑誌『スペクトラム』の記事で固体パワーエレクトロニクスという用語を用いてその定義を説明した。また1973年、ウェスティングハウス社のウィリアム・ニューウェルによって「パワー(電気・電力・電力機器)と、エレクトロニクス(電子・回路・半導体)と、コントロール(制御)を融合した学際的分野」と図を用いて説明された。以後、電力用半導体素子や制御用コンピュータの進化などによって発展・繁栄した。 代表的な技術例として、交流から直流に変換する順変換器(整流器)、直流を交流に変換する逆変換器(インバータ)などの半導体電力変換装置が挙げられる。 またその利用例として、発電や送電などの電力分野、回転機・ファン・ポンプ・ブロアなどを利用する産業分野、通信システムや工場などの電源装置、電車の駆動・変電などの電気鉄道分野、自動車、家庭用電化製品など非常に幅広く使用されている。.

パワーエレクトロニクスと工学 · パワーエレクトロニクスと電気工学 · 続きを見る »

制御工学

制御工学(せいぎょこうがく、英語:control engineering)とは、入力および出力を持つシステムにおいて、その(状態変数ないし)出力を自由に制御する方法全般にかかわる学問分野を指す。主にフィードバック制御を対象にした工学である。 大別すると、制御工学は、数理モデルに対して主に数学を応用する制御理論と、それを実モデルに適用していく制御応用とからなる。応用分野は機械系、電気系、化学プロセスが中心であるが、ものを操ることに関する問題が含まれれば制御工学の対象となるため、広範な分野と関連がある。.

制御工学と工学 · 制御工学と電気工学 · 続きを見る »

アレッサンドロ・ボルタ

アレッサンドロ・ジュゼッペ・アントニオ・アナスタージオ・ヴォルタ伯爵(Il Conte Alessandro Giuseppe Antonio Anastasio Volta、1745年2月18日 - 1827年3月5日)は、イタリアGiuliano Pancaldi, "Volta: Science and culture in the age of enlightenment", Princeton University Press, 2003.

アレッサンドロ・ボルタと工学 · アレッサンドロ・ボルタと電気工学 · 続きを見る »

ウィリアム・ギルバート (物理学者)

ウィリアム・ギルバート(William Gilbert またはWilliam Gylberde、1544年5月24日-1603年12月10日)は16世紀のイギリスの医師、物理学者、自然哲学者である。コペルニクスの地動説を早くから支持し、当時支配的だったアリストテレス哲学とそれに基づく学校教育を積極的に拒絶した。医師としての仕事のかたわら静電気、磁石の研究をおこなった。今日、主に著書 De Magnete (1600) で知られており、電気 (electricity) という言葉を作った1人とされている。また、versorium と名付けた回転する針のような検電器を発明しており、電気計測機器の祖とされている。 ギルバートの研究は、実験を用いた近代的な科学の先駆けとして、多くの科学者に多大な影響を及ぼし、電気工学や電気と磁気の父とされることもある。 なお、姓はギルバード (Gilberd) とされることもある。コルチェスターにある墓碑銘にはこちらの綴りで刻まれており、De Magnete の中の回想録的部分でもこの綴りが使われているし、コルチェスターには彼の名を冠した Gilberd School という学校もある。CGS単位系における、磁位・起磁力の単位ギルバートはウィリアム・ギルバートの名にちなんでいる。.

ウィリアム・ギルバート (物理学者)と工学 · ウィリアム・ギルバート (物理学者)と電気工学 · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーと工学 · エネルギーと電気工学 · 続きを見る »

ゲオルク・オーム

ルク・ジーモン・オーム(,, 1789年3月16日 - 1854年7月6日)は、ドイツの物理学者。 高校教師として働いていたが、当時アレッサンドロ・ボルタが発明したボルタ電池について研究を行った。独自に装置を製作し、導体にかかる電位差とそこに流れる電流には正比例の関係があるというオームの法則を発見した。これにより、電圧と電流と電気抵抗の基本的な関係が定義され、電気回路解析という分野が本当の意味で始まった。.

ゲオルク・オームと工学 · ゲオルク・オームと電気工学 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

コンピュータと工学 · コンピュータと電気工学 · 続きを見る »

シミュレーション

ミュレーション()は、何らかのシステムの挙動を、それとほぼ同じ法則に支配される他のシステムやコンピュータなどによって模擬すること広辞苑第6版。simulationには「模擬実験」や「模擬訓練」という意味もある。なお「シミュレイション」と表記することもまれにある。.

シミュレーションと工学 · シミュレーションと電気工学 · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

ジェームズ・クラーク・マクスウェルと工学 · ジェームズ・クラーク・マクスウェルと電気工学 · 続きを見る »

ソフトウェア工学

フトウェア工学(ソフトウェアこうがく、Software engineering)は、コンピュータのプログラム、およびその作成行為であるプログラミングを対象とした工学である。.

ソフトウェア工学と工学 · ソフトウェア工学と電気工学 · 続きを見る »

真空管

5球スーパーラジオに使われる代表的な真空管(mT管) 左から6BE6、6BA6、6AV6、6AR5、5MK9 ここでは真空管(しんくうかん、vacuum tube、vacuum valve)電子管あるいは熱電子管などと呼ばれるものについて解説する。.

工学と真空管 · 真空管と電気工学 · 続きを見る »

無線工学

無線工学(むせんこうがく)は、特に無線通信に関する項目を扱う電子工学の一分野である。.

工学と無線工学 · 無線工学と電気工学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

工学と物理学 · 物理学と電気工学 · 続きを見る »

発電

電(はつでん、electricity generation)とは、電気を発生させること。.

工学と発電 · 発電と電気工学 · 続きを見る »

EDA (半導体)

EDA(electronic design automation)、DA(design automation)とは、電子機器、半導体など電子系の設計作業を自動化し支援するためのソフトウェア、ハードウェアおよび手法の総称。半導体の設計工程とその製造工程、さらにそれを部品として実装するプリント基板設計の自動化で使われる用語である。それぞれの製造工程、検査工程でのデータ処理技術を意味するともいえる。 従来から単体で存在した電子系のCADやCAEを包含した用語として使われるようになった。実際のシステムのことをEDAツールといい、開発・販売業者をEDAベンダーという。電子・半導体メーカーなどが内製する場合もある。.

EDA (半導体)と工学 · EDA (半導体)と電気工学 · 続きを見る »

計算機工学

計算機工学(けいさんきこうがく、英語:Computer Engineering、コンピュータ工学)は、計算機科学と、電子工学などのコンピュータの実現に必要となる工学分野を組み合わせた学問分野である。たとえば、コンピュータの設計者は、ハードウェアやソフトウェアについての科学やそれらの統合に関しての他に、ある程度の電子工学などの知識を必要とする(さらには冷却などについても考える必要があるかもしれない)。従って、電子工学の中でも、いわゆる「弱電」を主とし、電気工学寄りな部分(いわゆる「強電」)や物理学的側面には、一般には重きを置かない(たとえばスーパーコンピューティングのための高速素子の研究など、例外もある)。計算機工学の中心はコンピュータの設計に関する部分であり、マイクロプロセッサからスーパーコンピュータまでの回路設計やシステム設計を含む。また、それだけでなくコンピュータシステムを様々なシステムに組み込む(組込みシステム)ことも計算機工学の一部である。例えば、自動車にはコンピュータやデジタル機器がいくつも搭載されている。 計算機工学に含まれるタスクとして、リアルタイムマイクロコントローラ向けの組込みソフトウェア開発、VLSIチップ設計、アナログセンサー関連、プリント基板設計、オペレーティングシステム設計などがある。ロボットはコンピュータと様々な電気的システムを活用するため、計算機工学者がロボット工学を研究することも多い。.

工学と計算機工学 · 計算機工学と電気工学 · 続きを見る »

航空機

航空機(こうくうき、aircraftブリタニカ百科事典「航空機」)は、大気中を飛行する機械の総称である広辞苑 第五版 p.889「航空機」。.

工学と航空機 · 航空機と電気工学 · 続きを見る »

配電

配電(はいでん)とは、電気を配る(分配する)ことであるが、電気事業における配電とは、送電網から変電所を通して受電した電力(電気)を需要家に供給するため、配電網システムの構築とその運用を行うことである。電線路の一部を形成する。.

工学と配電 · 配電と電気工学 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

工学と電力 · 電力と電気工学 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

工学と電子工学 · 電子工学と電気工学 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

工学と電気 · 電気と電気工学 · 続きを見る »

電気学会

一般社団法人電気学会(いっぱんしゃだんほうじんでんきがっかい、英文名称:The Institute of Electrical Engineers of Japan、略称:IEEJ)は、1888年(明治21年)に電気学術の調査・研究と広報・普及を目的に創立された学会である。志田林三郎等によって創立され、初代会長には榎本武揚が就任した。会員数は約二万四千人。元文部科学省所管。.

工学と電気学会 · 電気学会と電気工学 · 続きを見る »

集積回路

SOPパッケージに封入された標準ロジックICの例 集積回路(しゅうせきかいろ、integrated circuit, IC)は、主としてシリコン単結晶などによる「半導体チップ」の表面および内部に、不純物の拡散による半導体トランジスタとして動作する構造や、アルミ蒸着とエッチングによる配線などで、複雑な機能を果たす電子回路の多数の素子が作り込まれている電子部品である。多くの場合、複数の端子を持つ比較的小型のパッケージに封入され、内部で端子からチップに配線されモールドされた状態で、部品・製品となっている。.

工学と集積回路 · 集積回路と電気工学 · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

工学と材料工学 · 材料工学と電気工学 · 続きを見る »

機械工学

機械工学(きかいこうがく、mechanical engineering)とは、機械あるいは機械要素の設計、製作などから、機械の使用方法、運用などまでの全ての事項を対象とする工学の一分野である。 具体的には、熱力学、機械力学、流体力学、材料力学の四力学を基礎とした機械の設計、製作のための技術を学ぶ他、より広義には、機構学、制御工学、経営工学、材料工学(金属学)、そして近年のコンピュータ化に対応したハードウェア及びソフトウェア技術全般を研究対象としている。.

工学と機械工学 · 機械工学と電気工学 · 続きを見る »

情報

情報(じょうほう、英語: information、ラテン語: informatio インフォルマーティオー)とは、.

工学と情報 · 情報と電気工学 · 続きを見る »

情報工学

情報工学(じょうほうこうがく)は情報分野についての工学である。語感としては、情報科学という語がもっぱらおおまかに「科学」という語が指す範囲を中心としているのに対し、「工学」的な分野に重心があるが、内実としてはどれもたいして変わらないことが多い(たとえば、大学の学部学科名などに関しては、個々の大学の個性による違いのほうが、名前による違いより大きい)。日本で、大学の工学部などにコンピュータ科学ないし情報関係の学科を設置する際に、「工学」部という語との整合のためだけに便利に使われた、という面が大きい(情報工学科の記事を参照)。 なお英語の information engineering はソフトウェア工学における一手法であり、日本語の「情報工学」とは対応しない。また似た言葉に情報学がある。.

工学と情報工学 · 情報工学と電気工学 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

工学と数学 · 数学と電気工学 · 続きを見る »

上記のリストは以下の質問に答えます

工学と電気工学の間の比較

電気工学が209を有している工学は、331の関係を有しています。 彼らは一般的な36で持っているように、ジャカード指数は6.67%です = 36 / (331 + 209)。

参考文献

この記事では、工学と電気工学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »