ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

巡回群と標数

ショートカット: 違い類似点ジャカード類似性係数参考文献

巡回群と標数の違い

巡回群 vs. 標数

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。. 標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

巡回群と標数間の類似点

巡回群と標数は(ユニオンペディアに)共通で8ものを持っています: 可換体イデアル (環論)冪乗素イデアル素数環 (数学)P進数有限体

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

可換体と巡回群 · 可換体と標数 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

イデアル (環論)と巡回群 · イデアル (環論)と標数 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

冪乗と巡回群 · 冪乗と標数 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

巡回群と素イデアル · 標数と素イデアル · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

巡回群と素数 · 標数と素数 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

巡回群と環 (数学) · 標数と環 (数学) · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

P進数と巡回群 · P進数と標数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

巡回群と有限体 · 有限体と標数 · 続きを見る »

上記のリストは以下の質問に答えます

巡回群と標数の間の比較

標数が25を有している巡回群は、56の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は9.88%です = 8 / (56 + 25)。

参考文献

この記事では、巡回群と標数との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »