ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

実数

索引 実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

102 関係: 単位元古代ギリシア可算集合可換体同型写像多様体実解析実数の連続性完備化小数層 (数学)岩波文庫岩波書店平面幾何学代数学代数体位相空間微分積分学区間 (数学)化学ネイピア数モナド (哲学)ユークリッド空間ヨハン・ハインリヒ・ランベルトライツェン・エヒベルトゥス・ヤン・ブラウワーリーマン予想リヒャルト・デーデキントルベーグ積分レオポルト・クロネッカーレオンハルト・オイラーパオロ・ルフィニピタゴラス教団デデキント切断フーリエ級数フィルター (数学)フェルディナント・フォン・リンデマンニールス・アーベルベルナルト・ボルツァーノベルンハルト・リーマンベクトル空間分離公理和集合アラン・コンヌアンリ・ルベーグアデール環アイザック・ニュートンイプシロン-デルタ論法イデアル類群エジプト数学...オーギュスタン=ルイ・コーシーカール・ワイエルシュトラスゲオルク・カントールコーシー列ゴットフリート・ライプニッツシャルル・エルミートシュルバ・スートラジョゼフ・リウヴィル円周率の無理性の証明公理的集合論四元数線型位相空間経済学無理数直線選択公理順序集合複素数解析学計測高木貞治超実数超越数超準解析距離空間関数 (数学)関数解析学量子力学自然科学集合連続 (数学)連続体仮説連結空間虚数P進数極限次元正の数と負の数正規部分群河野伊三郎測度論溶液濃度濃度 (数学)有理数数学数学基礎論数学的直観主義時間19世紀2の平方根 インデックスを展開 (52 もっと) »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 実数と単位元 · 続きを見る »

古代ギリシア

この項目では、太古から古代ローマに占領される以前までの古代ギリシアを扱う。.

新しい!!: 実数と古代ギリシア · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: 実数と可算集合 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 実数と可換体 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 実数と同型写像 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 実数と多様体 · 続きを見る »

実解析

数学において実解析(じつかいせき、Real analysis)あるいは実関数論(じつかんすうろん、theory of functions of a real variable)は(ユークリッド空間(の部分集合)上または(抽象的な)集合上の関数)について研究する解析学の一分野である。現代の実解析では、関数として一般に複素数値関数や複素数値写像あるいは複素数値関数に値をとる写像も含む。 実解析は、元々は実1変数実数値関数あるいは実多変数実数値およびベクトルに対する初等的な微分積分を意味していた。しかし現代の実解析は、積分論のいちぶとして測度論とルベーグ積分、関数空間((超)関数の成す線型位相空間)の理論、関数不等式、特異積分作用素などを扱う。関数解析におけるバナッハ空間の理論や作用素論・調和解析のフーリエ解析などの初歩的または部分的な理論も含むとされている。 関数空間の例には、L^p空間・数列空間・ソボレフ空間・緩増加超関数の空間・ベゾフ空間・トリーベル-リゾルキン空間・実解析版ハーディー空間・実補間空間がある。関数不等式の例には、作用素の実補間または複素補間による作用素または関数の有界性の調整・関数方程式について、初期値または非斉次項(非線型項)と未知関数の、有界性や可積分性または可微分性の関係を表すL^p-L^q評価と時空分散評価および時空消散評価・時間の経過に対する、関数の可微分性または可積分性を保存する意味を持つエネルギー(不)等式などの(解の存在を前提とした)評価式(アプリオリ評価)・別々の作用素を施された関数のノルムの関係、などがある。特異積分作用素には、「積分と微分を同時にする」リース変換や、流体力学と発展方程式の理論で現れるヒルベルト変換がある。 超関数とフーリエ変換は、実解析に入るのか関数解析に入るのか数学者の間でも扱いが分かれている。さらに今ではユークリッド空間だけではなく抽象的な集合(群または位相空間あるいは関数空間など)で定義された複素数値の写像(複素数値測度、複素数値線型汎関数)も取り扱う。そして特異積分作用素を扱う理論は「関数解析」における作用素論ではなく「実解析」として扱われている。複素解析の実解析への応用は(留数定理による実関数の積分の計算が)有名だが、実解析の複素解析への応用(その計算にルベーグの収束定理を適用することによる簡易化;フーリエ変換による複素解析版ハーディー空間とL^p関数の関係など)もある。現代数学では「実解析」の範囲は明確ではなく「複素解析」とは対をなす分野ではなくなっている。 また、実解析による偏微分微分方程式の解法は、主に関数空間と関数不等式およびフーリエ変換や特異積分作用素によるもので、解が具体的に表示できることも多いが計算が多くなる場面も多い。関数解析の作用素により論理を重ねる方法(例えば、リースの表現定理・変分法・半群理論・リース-シャウダーの理論・スペクトル分解などを使う解の存在証明)とは異なるが、高等的には両者を巧みに合わせて(関連しながら)解かれている。.

新しい!!: 実数と実解析 · 続きを見る »

実数の連続性

実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。 実数の連続性は、実数の完備性(completeness of the real numbers)とも言われる。また、実数の連続性を議論の前提とする立場であれば実数の公理と記述する場合もある。 また、実数の連続性における連続性とは関数の連続性とは別の概念である。.

新しい!!: 実数と実数の連続性 · 続きを見る »

完備化

*完備化 (距離空間).

新しい!!: 実数と完備化 · 続きを見る »

小数

小数(しょうすう,decimal)とは、位取り記数法と小数点を用いて実数を表現するための表記法である。.

新しい!!: 実数と小数 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 実数と層 (数学) · 続きを見る »

岩波文庫

岩波文庫(いわなみぶんこ)は、株式会社岩波書店が発行する文庫本レーベル。1927年(昭和2年)7月10日に、ドイツのレクラム文庫を模範とし、書物を安価に流通させ、より多くの人々が手軽に学術的な著作を読めるようになることを目的として創刊された日本初の文庫本のシリーズ。最初の刊行作品は『新訓万葉集』などであった。.

新しい!!: 実数と岩波文庫 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 実数と岩波書店 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 実数と平面 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 実数と幾何学 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 実数と代数学 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 実数と代数体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 実数と位相空間 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 実数と微分積分学 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: 実数と区間 (数学) · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 実数と化学 · 続きを見る »

ネイピア数

1.

新しい!!: 実数とネイピア数 · 続きを見る »

モナド (哲学)

モナド (Monad) は、ライプニッツ が案出した空間を説明するための概念である。ギリシア語 μονάς monas モナス(個、単一)、μόνος monos モノス (単一の) に由来する。単子と翻訳される場合もある。.

新しい!!: 実数とモナド (哲学) · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 実数とユークリッド空間 · 続きを見る »

ヨハン・ハインリヒ・ランベルト

ヨハン・ハインリヒ・ランベルト(Johann Heinrich Lambert、1728年8月26日 - 1777年9月25日)は、ドイツの数学者・物理学者・化学者・天文学者・哲学者。地図の投影法(ランベルト正積方位図法・ランベルト正角円錐図法など)を考案したことや、円周率が無理数である証明をしたことなどで知られる。 主著に『新オルガノン』など。.

新しい!!: 実数とヨハン・ハインリヒ・ランベルト · 続きを見る »

ライツェン・エヒベルトゥス・ヤン・ブラウワー

ライツェン・エヒベルトゥス・ヤン・ブラウワー(Luitzen Egbertus Jan Brouwer、1881年2月27日 - 1966年12月2日)はオランダの数学者。ブラウエル、ブローウェルなどとも表記される。トポロジーにおいて不動点定理をはじめとする多大な業績を残し、また数学基礎論においては直観主義数学の創始者として知られる。.

新しい!!: 実数とライツェン・エヒベルトゥス・ヤン・ブラウワー · 続きを見る »

リーマン予想

1.

新しい!!: 実数とリーマン予想 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: 実数とリヒャルト・デーデキント · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: 実数とルベーグ積分 · 続きを見る »

レオポルト・クロネッカー

レオポルト・クロネッカー(Leopold Kronecker, 1823年12月7日 - 1891年12月29日)はドイツの数学者である。リーグニッツ(現在のポーランド・レグニツァ Legnica)生まれ。ユダヤ系。 彼は、ヤコビ、ディリクレ、アイゼンシュタイン、クンマーといったドイツの先達の後に立って、また、パリ滞在中にエルミートなどの影響によって、群論、モジュラー方程式、代数的整数論、楕円関数、また行列式の理論において大きな業績を残した。クロネッカーの名前は現在でも、クロネッカーのデルタ、クロネッカー積、クロネッカー=ウェーバーの定理、クロネッカーの青春の夢などに見ることができる。.

新しい!!: 実数とレオポルト・クロネッカー · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 実数とレオンハルト・オイラー · 続きを見る »

パオロ・ルフィニ

パオロ・ルフィニ(Paolo Ruffini、1765年9月22日-1822年5月10日)はイタリアの数学者、哲学者、医者。.

新しい!!: 実数とパオロ・ルフィニ · 続きを見る »

ピタゴラス教団

日の出を祝うピタゴラス(:en:Fyodor Bronnikov画) ピタゴラス教団(ピタゴラスきょうだん、Pythagorean Order)は、古代ギリシアにおいて哲学者のピタゴラスによって創設されたとされる一種の宗教結社。ピュタゴラス教団とも。.

新しい!!: 実数とピタゴラス教団 · 続きを見る »

デデキント切断

デデキント切断(デデキントせつだん、Dedekind cut)、あるいは単に切断 (Schnitt) とは、リヒャルト・デデキントが考案した数学的な手続きで、実数論の基礎付けに用いられる。.

新しい!!: 実数とデデキント切断 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 実数とフーリエ級数 · 続きを見る »

フィルター (数学)

フィルター (filter) とは半順序集合の特別な部分集合のことである。実際には半順序集合として、特定の集合の冪集合に包含関係で順序を入れた物が考察されることが多い。フィルターが初めて用いられたのは一般位相幾何学の研究であったが、現在では順序理論や束の理論でも用いられている。順序理論的な意味でのフィルターの双対概念はイデアルである。 類似の概念として1922年にエリアキム・H・ムーアとH.L.スミスによって導入されたネットの概念がある。.

新しい!!: 実数とフィルター (数学) · 続きを見る »

フェルディナント・フォン・リンデマン

リンデマン フェルディナント・フォン・リンデマン(Carl Louis Ferdinand von Lindemann, 1852年4月12日 - 1939年3月6日)は、ドイツの数学者である。 リンデマンはヴュルツブルク大学で教授資格を得て教職に就き、1879年からフライブルク大学教授、1883年からケーニヒスベルク大学教授、1893年にはミュンヘン大学教授を歴任して、1904年にはミュンヘン大学の学長に就任した。 リンデマンは超越数論に関するリンデマンの定理を証明し、円周率 πが超越数であることを示した。これにより、古代から多くの数学者が取り組んできた円積問題の作図が不可能だと証明した。 Category:ドイツの数学者 Category:数論学者 520412 -520412 Category:ルートヴィヒ・マクシミリアン大学ミュンヘンの教員 Category:ケーニヒスベルク大学の教員 Category:アルベルト・ルートヴィヒ大学フライブルクの教員 Category:ユリウス・マクシミリアン大学ヴュルツブルクの教員 Category:ハノーファー出身の人物 Category:1852年生 Category:1939年没 Category:数学に関する記事.

新しい!!: 実数とフェルディナント・フォン・リンデマン · 続きを見る »

ニールス・アーベル

ニールス・ヘンリック・アーベル(Niels Henrik Abel、1802年8月5日 - 1829年4月6日)はノルウェーの数学者である。.

新しい!!: 実数とニールス・アーベル · 続きを見る »

ベルナルト・ボルツァーノ

ベルナルト・ボルツァーノ(Bernard Placidus Johann Nepomuk Bolzano,1781年10月5日 - 1848年12月18日)は、チェコの哲学者、数学者、論理学者、宗教学者。ライプニッツの哲学に影響を受け、反カント哲学の立場から、客観主義的な論理学や哲学を打ち立てた。その成果は、フランツ・ブレンターノやエトムント・フッサールらに影響を与えた。彼の名前は、ベルナルド・ボルツァーノやドイツ語圏ではベルンハルト・ボルツァーノとも呼ばれている。.

新しい!!: 実数とベルナルト・ボルツァーノ · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 実数とベルンハルト・リーマン · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 実数とベクトル空間 · 続きを見る »

分離公理

数学の位相空間論周辺分野において、考えたい種類の位相空間を割り出すための様々な制約条件が知られている。そういった制約のうちのいくつかが分離公理(ぶんりこうり、separation axioms)と呼ばれる条件によって与えられる。に因んで、チホノフの分離公理とも呼ばれる。 分離公理が「公理」であるのは、位相空間に関する概念を定義するときに、これらの条件を余分な公理として追加して、位相空間がどのようなものかによってより制限された概念を得るという意味においてのみである。現代的なアプローチでは、きっぱりと位相空間を公理化してしまってから位相空間の「種類」について述べるという形になっているが、「分離公理」の語が定着している。いくつかの分離公理に "T" が付くのは「分離公理」を意味するドイツ語の Trennungsaxiom に由来する。 分離公理に関する用語の正確な意味は時とともに変化してきた。特に、古い文献を参照する際には、そこで述べられているそれぞれの条件の定義が、自分がそうだと思っている語の意味と一致しているかどうか確認しておくべきである。.

新しい!!: 実数と分離公理 · 続きを見る »

和集合

数学において、集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、)、あるいは演算的に集合の和(わ、sum)、もしくは'''結び'''(むすび、)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである。.

新しい!!: 実数と和集合 · 続きを見る »

アラン・コンヌ

アラン・コンヌ(Alain Connes, 1947年4月1日 - )はフランスの数学者。IHÉS、コレージュ・ド・フランスおよびオハイオ州立大学教授。作用素環論や非可換幾何の研究で知られる。 高等師範学校卒業後、CNRS、パリ第6大学を経てIHÉS教授となる。1982年にフィールズ賞、2001年にクラフォード賞を受賞した。1984年からコレージュ・ド・フランス教授を兼任。.

新しい!!: 実数とアラン・コンヌ · 続きを見る »

アンリ・ルベーグ

アンリ・レオン・ルベーグ(Henri Leon Lebesgue、1875年6月28日 ボーヴェ生まれ - 1941年7月26日 パリ没)は、フランスの数学者。17世紀以来の積分の概念の一般化を与えたルベーグ積分の理論で知られる。この理論は1902年にナンシー大学に提出した博士論文の中で構築された。.

新しい!!: 実数とアンリ・ルベーグ · 続きを見る »

アデール環

アデール環(adele ring) (単にアデールと呼ぶ事もある)とは、有理数の体(あるいはより一般的な任意の代数体)の上に構成された自己双対な位相環であり、整数論における基本的な対象である。アデール環は有理数体の全ての完備化の情報をもっている。 アデール環は、はじめ類体論の簡素化と明確化のためにクロード・シュヴァレー(Claude Chevalley)により導入されたが、現代の整数論では欠かせない概念となっている。 アデール環の乗法群を代数体の乗法群わってできる群は類体論において中心的な対象である。また多項式の有理数解を研究する(Diophantine geometry)において、まず有理数体をふくむ完備なアデール環において解を発見し、それが実際に有理数体における解となるかを決定するという手法をとることもある。 「アデール」という用語は、「additive idèle」(加法的なイデール)を短くしたものでありNeukirch (1999) p. 357.

新しい!!: 実数とアデール環 · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 実数とアイザック・ニュートン · 続きを見る »

イプシロン-デルタ論法

ε-δ 論法(イプシロンデルタろんぽう、(ε, δ)-definition of limit)は、解析学において、(有限な)実数値のみを用いて極限を議論する方法である。.

新しい!!: 実数とイプシロン-デルタ論法 · 続きを見る »

イデアル類群

数学において,体 に対してイデアル類群(ideal class group)あるいは類群(class group)とは,商群 である,ただし は の分数イデアルの群で, は の単項イデアルからなる部分群である.代数体(あるいはより一般に任意のデデキント環)の整数環における一意分解の成り立たなさをイデアル類群によって記述することができる.この群が有限のとき(代数体の整数環の場合はそうである),その群の位数を類数(class number)と呼ぶ.デデキント環の乗法的理論はそのイデアル類群の構造と密接にかかわっている.例えば,デデキント環のイデアル類群が自明であることとその環が一意分解整域であることは同値である..

新しい!!: 実数とイデアル類群 · 続きを見る »

エジプト数学

プト数学(エジプトすうがく、Egyptian mathematics)とは、紀元前3000年から紀元前300年頃の古代エジプトにおいて、主にエジプト語を用いて行われた数学全般を指す。.

新しい!!: 実数とエジプト数学 · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 実数とオーギュスタン=ルイ・コーシー · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 実数とカール・ワイエルシュトラス · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 実数とゲオルク・カントール · 続きを見る »

コーシー列

解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。基本列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)、自己漸近列(じこぜんきんれつ)などとも呼ばれる。実数論において最も基本となる重要な概念の一つである。 各 ''n'' に対して順番に縦軸上にプロットしたコーシー列の例。 ''x''''n''.

新しい!!: 実数とコーシー列 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 実数とゴットフリート・ライプニッツ · 続きを見る »

シャルル・エルミート

ャルル・エルミート(Charles Hermite、1822年12月24日-1901年1月14日)は、フランスの数学者。1869年からエコール・ポリテクニークの教授、1876年からソルボンヌ大学の教授を務めた。 エルミートは、エルミート内積、エルミート行列やエルミート作用素(エルミート演算子)、エルミート多項式などにその名を残している。また、オイラー、ラグランジュ、アーベル、ガロア等、数多くの偉大な数学者が挑んだ五次方程式の解法を見つけるという難問に挑み、1858年に楕円関数を用いて、初めて一般的な五次方程式を解くことに成功した。1873年にネイピア数 が超越数であることを証明したことでも知られる。この結果を引き継いで、1882年にフェルディナント・フォン・リンデマンにより円周率 が超越数であることが証明され、円積問題が否定的に解決された(エルミート.

新しい!!: 実数とシャルル・エルミート · 続きを見る »

シュルバ・スートラ

ュルバ・スートラは、インドの宗教文書ヴェーダーンガにおいて、祭壇や祭火壇の作り方をのべた文献。紀元前6世紀から2世紀頃にかけて編纂された。シュルバとは、サンスクリット語で「犠牲の儀式」意味する語で、のちに祭壇の寸法をはかる縄を意味するようになった。スートラとは、知識や祭儀を簡潔に伝えた経典を指す。.

新しい!!: 実数とシュルバ・スートラ · 続きを見る »

ジョゼフ・リウヴィル

ョゼフ・リウヴィル ジョゼフ・リウヴィル(Joseph Liouville,, 1809年3月24日 - 1882年9月8日)は、フランスの物理学者、数学者。リウヴィルの定理とよばれる業績を3つの分野に残し(物理学、解析学、数論)、さらに数論においては超越数の最初の例を与えた。エヴァリスト・ガロアの功績を発見し、全集を公表したことでも知られている。パ=ド=カレー県サントメールで生まれ、1882年、パリで死去した。.

新しい!!: 実数とジョゼフ・リウヴィル · 続きを見る »

円周率の無理性の証明

円周率の無理性の証明(えんしゅうりつのむりせいのしょうめい)は、円周率が無理数であること、すなわち円周率の小数展開が無限に続き、しかも循環しないことの証明である。円周率が無理数であること自体はよく知られた事実であるが、その証明を目にする機会はあまりない。知られている中で最も簡単な証明は、初等的な微分積分学のみを用いるものである。.

新しい!!: 実数と円周率の無理性の証明 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 実数と公理的集合論 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 実数と四元数 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 実数と線型位相空間 · 続きを見る »

経済学

この記事では経済学(けいざいがく、economics)について解説する。経済学の原語であるeconomicsという語彙は、新古典派経済学者アルフレッド・マーシャルの主著『経済学原理』(Principles of Economics, 1890年)によって誕生・普及したとされる。 日本語で「経済学」と言った場合、economicsだけでなく政治経済学(political economy)を指す場合もあるため、本記事ではこの「政治経済学」も併せて解説する。 佐藤雅彦・竹中平蔵 『経済ってそういうことだったのか会議』 日本経済新聞社学〈日経ビジネス人文庫〉、2002年、5頁。。 -->.

新しい!!: 実数と経済学 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 実数と無理数 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 実数と直線 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: 実数と選択公理 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 実数と順序集合 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 実数と複素数 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 実数と解析学 · 続きを見る »

計測

計測(けいそく、measurement and instrumentation)とは、日本の技術分野において、測定(measurement)の代わりに使われる用語を指す南茂夫、木村一郎、荒木勉『はじめての計測工学』改定第2版、講談社、2012年12月、ISBN 9784061565111。.

新しい!!: 実数と計測 · 続きを見る »

高木貞治

木 貞治(たかぎ ていじ、1875年(明治8年)4月21日 - 1960年(昭和35年)2月28日)は、日本の数学者。東京帝国大学教授。第1回フィールズ賞選考委員。文化勲章受章。.

新しい!!: 実数と高木貞治 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 実数と超実数 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 実数と超越数 · 続きを見る »

超準解析

は、あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(nonstandard analysis)は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 超準解析は1960年代に数学者アブラハム・ロビンソンによって創始せられた。 彼は次のように記述している: 無限に小さいあるいは無限小の量という概念は我々の直観に自然に訴えかけるように見える。何れにせよ、無限小の使用は、微分学・積分学の黎明期において、広く普及した。相異なる2つの実数の差が無限に小さくなることはないという 異論に対して、ゴットフリート・ライプニッツは、無限小の理論は理想的数――それは実数と比較して無限に小さかったり無限に大きかったりするものであるが、後者(訳注:実数)と同じ性質を有する――の導入を含意するものであると主張した。 ロビンソンはこのライプニッツのはの先駆けであるとしている。ロビンソンは次のように続ける: しかしながら、彼も、彼の弟子たちや後継者たちも、このようなシステムに繋がる合理的な進展(訳注:そのような原理を合理化するもの)を得なかった。その結果、無限小の理論は徐々に評判を落としてゆき、最終的には古典的な極限の理論に取って代わられた。Robinson, A.: Non-standard analysis.

新しい!!: 実数と超準解析 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 実数と距離空間 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 実数と関数 (数学) · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: 実数と関数解析学 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 実数と量子力学 · 続きを見る »

自然科学

自然科学(しぜんかがく、英語:natural science)とは、.

新しい!!: 実数と自然科学 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 実数と集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 実数と連続 (数学) · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 実数と連続体仮説 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 実数と連結空間 · 続きを見る »

虚数

虚数(きょすう)とは、実数ではない複素数のことである。ただし、しばしば「虚数」と訳される は、「2乗した値がゼロを超えない実数になる複素数」として定義される場合がある。 または で表される虚数単位は代表的な虚数の例である。 1572年にラファエル・ボンベリ は虚数を定義した。しかし当時は、ゼロや負の数ですら架空のもの、役に立たないものと考えられており、負の数の平方根である虚数は尚更であった。ルネ・デカルトも否定的にとらえ、著書『La Géométrie(幾何学)』で「想像上の数」と名付け、これが英語の imaginary number の語源になった。その後徐々に多くの数学者に認知されていった。.

新しい!!: 実数と虚数 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 実数とP進数 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 実数と極限 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

新しい!!: 実数と次元 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 実数と正の数と負の数 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 実数と正規部分群 · 続きを見る »

河野伊三郎

河野 伊三郎(こうの いさぶろう、1905年 - 1994年)は、日本の数学者。.

新しい!!: 実数と河野伊三郎 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: 実数と測度論 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

新しい!!: 実数と溶液 · 続きを見る »

濃度

濃度(のうど)は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本工業規格(JIS))『JISハンドブック 49 化学分析』日本規格協会;2008年と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」「重量モル濃度」等「~濃度」以外の訳語は見られない。.

新しい!!: 実数と濃度 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 実数と濃度 (数学) · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 実数と有理数 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 実数と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 実数と数学 · 続きを見る »

数学基礎論

数学基礎論(すうがくきそろん、英語:)は、数学の一分野。他の分野が整数・実数・図形・関数などを取り扱うのに対し、数学自体を対象とする。.

新しい!!: 実数と数学基礎論 · 続きを見る »

数学的直観主義

数学的直観主義(すうがくてきちょっかんしゅぎ)とは、数学の基礎を数学者の直観におく立場のことを指す。.

新しい!!: 実数と数学的直観主義 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 実数と時間 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: 実数と19世紀 · 続きを見る »

2の平方根

1 の直角二等辺三角形の斜辺の長さである。 2 の平方根(にのへいほうこん、square root of two)は、平方して になる数である。すなわち、 を満たす数 のことである。この数は後述するように無理数である。2 の平方根は、人類の歴史において極めて初期の段階で発見されており、おそらく最初に知られた無理数であると考えられている。幾何学的には、1辺の長さが の正方形の対角線の長さに相当する。また、 は白銀数と呼ばれる。 の平方根には正負の 2 つがある。正の平方根を と書き、「スクウェア・ルート 2」あるいは単に「ルート 2」と読む冪根は平方根に限らないため、「平方(2乗)」を意味する「スクウェア」をつける方が正しいが、立方根(3乗根)などと特に区別する必要がない場合には、「スクウェア」の部分は省略されることが多い。。またこのとき、負の平方根は と書き表すことができる が (あるいは )の根であることは、負の数同士の積がそれらの絶対値の積に等しいことから示される。。 は無理数であるから、その小数部分は循環しない循環小数は有理数である。。 の小数点以下 98 桁までは以下の通りである。 上記の最初の数桁を、語呂合わせで「一夜一夜に人見頃(ひと よ ひと よ に ひと み ご ろ)」などと覚える記憶法がしばしば用いられている。.

新しい!!: 実数と2の平方根 · 続きを見る »

ここにリダイレクトされます:

実数体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »