ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

宇宙と平坦性問題

ショートカット: 違い類似点ジャカード類似性係数参考文献

宇宙と平坦性問題の違い

宇宙 vs. 平坦性問題

宇宙(うちゅう)とは、以下のように定義される。. 平坦性問題(へいたんせいもんだい、flatness problem)とはビッグバン宇宙論における微調整問題の一つである。宇宙のインフレーション仮説によって解決される。 膨張宇宙では、宇宙内部に含まれる物質やエネルギーによって作られる重力場によって宇宙膨張が減速を受ける傾向にある。宇宙に十分多くの質量が存在すれば、膨張は最終的に止まって宇宙は収縮に向かい、ビッグクランチと呼ばれる特異点に達する。このような宇宙の時空は正の曲率を持ち、「閉じた宇宙」と呼ばれる。それほど多くの質量がなければ、宇宙は単純に永遠に膨張を続けることになる。このような宇宙の時空は負の曲率を持ち、「開いた宇宙」と呼ばれる。両者の中間、すなわち宇宙の膨張率が0に向かって漸近するような宇宙は曲率0の時空を持ち、「平坦な宇宙」と呼ばれる。平坦な宇宙のエネルギー密度ρcを臨界密度と呼び、 \rho_c.

宇宙と平坦性問題間の類似点

宇宙と平坦性問題は(ユニオンペディアに)共通で10ものを持っています: 宇宙のインフレーション宇宙論ハッブルの法則パーセクビッグバンビッグクランチエネルギー銀河恒星曲率

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

宇宙と宇宙のインフレーション · 宇宙のインフレーションと平坦性問題 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

宇宙と宇宙論 · 宇宙論と平坦性問題 · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

ハッブルの法則と宇宙 · ハッブルの法則と平坦性問題 · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

パーセクと宇宙 · パーセクと平坦性問題 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

ビッグバンと宇宙 · ビッグバンと平坦性問題 · 続きを見る »

ビッグクランチ

ビッグクランチ ビッグクランチ前の宇宙 ビッグクランチ(Big Crunch)とは、予測される宇宙の終焉の一形態である。現在考えられている宇宙モデルでは、宇宙はビッグバンによって膨張を開始したとされているが、宇宙全体に含まれる質量(エネルギー)がある値よりも大きい場合には、自身の持つ重力によっていずれ膨張から収縮に転じ、宇宙にある全ての物質と時空は無次元の特異点に収束すると考えられる。 ただし、プランク長と呼ばれる微小な長さよりも十分に小さくなった宇宙を理論的に取り扱うためには、一般相対性理論に加えて量子力学的効果をとり入れる必要がある。このような理論を量子重力理論と呼ぶが、2005年現在では完全な量子重力理論はまだ構築されていないため、ビッグクランチによって何が起こるかを物理学的に記述することはできていない。ビッグクランチの後、「振動宇宙」(Oscillatory universe) として再び宇宙が膨張に転じるかもしれないと考える科学者もいる。 宇宙がビッグクランチを迎えるのか、それとも永遠に膨張を続けるのかについては、以下の2点に依存している。.

ビッグクランチと宇宙 · ビッグクランチと平坦性問題 · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーと宇宙 · エネルギーと平坦性問題 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

宇宙と銀河 · 平坦性問題と銀河 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

宇宙と恒星 · 平坦性問題と恒星 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

宇宙と曲率 · 平坦性問題と曲率 · 続きを見る »

上記のリストは以下の質問に答えます

宇宙と平坦性問題の間の比較

平坦性問題が18を有している宇宙は、208の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は4.42%です = 10 / (208 + 18)。

参考文献

この記事では、宇宙と平坦性問題との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »