ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

仮説上の天体と太陽系外惑星

ショートカット: 違い類似点ジャカード類似性係数参考文献

仮説上の天体と太陽系外惑星の違い

仮説上の天体 vs. 太陽系外惑星

仮説上の天体(かせつじょうのてんたい)では、学問上の仮説として存在が提唱され、後に存在が否定されたか、存在が確認されていない天体について記述する。 インド占星術など、科学ではないが占星術や神秘学などでの仮説上の惑星についてもこの項目で解説している。 フィクション作品に登場する架空の天体については架空の惑星一覧を参照のこと。. 太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

仮説上の天体と太陽系外惑星間の類似点

仮説上の天体と太陽系外惑星は(ユニオンペディアに)共通で31ものを持っています: 天文単位太陽太陽系小惑星中性子星彗星土星地球地球型惑星バーナード星ダイヤモンドウィリアム・ハーシェルクトニア惑星コア無し惑星冥王星炭素惑星白色矮星食変光星褐色矮星赤色矮星重力連星掩蔽恒星潮汐力木星木星型惑星海王星海洋惑星...2009年 インデックスを展開 (1 もっと) »

天文単位

天文単位(てんもんたんい、astronomical unit、記号: au)は長さの単位で、正確に である。2014年3月に「国際単位系 (SI) 単位と併用される非 SI 単位」(SI併用単位)に位置づけられた。それ以前は、SIとの併用が認められている単位(SI単位で表される、数値が実験的に得られるもの)であった。主として天文学で用いられる。.

仮説上の天体と天文単位 · 天文単位と太陽系外惑星 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

仮説上の天体と太陽 · 太陽と太陽系外惑星 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

仮説上の天体と太陽系 · 太陽系と太陽系外惑星 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

仮説上の天体と小惑星 · 太陽系外惑星と小惑星 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

中性子星と仮説上の天体 · 中性子星と太陽系外惑星 · 続きを見る »

彗星

アメリカ合衆国アリゾナ州のカタリナ天文台で1974年11月1日に撮影されたコホーテク彗星 クロアチアのパジンで1997年3月29日に撮影されたヘール・ボップ彗星 彗星(すいせい、comet)は、太陽系小天体のうち主に氷や塵などでできており、太陽に近づいて一時的な大気であるコマや、コマの物質が流出した尾(テイル)を生じるものを指す。.

仮説上の天体と彗星 · 太陽系外惑星と彗星 · 続きを見る »

土星

土星(どせい、、、)は、太陽から6番目の、太陽系の中では木星に次いで2番目に大きな惑星である。巨大ガス惑星に属する土星の平均半径は地球の約9倍に当る。平均密度は地球の1/8に過ぎないため、巨大な体積の割りに質量は地球の95倍程度である。そのため、木星型惑星の一種とされている。 土星の内部には鉄やニッケルおよびシリコンと酸素の化合物である岩石から成る中心核があり、そのまわりを金属水素が厚く覆っていると考えられ、中間層には液体の水素とヘリウムが、その外側はガスが取り巻いている。 惑星表面は、最上部にあるアンモニアの結晶に由来する白や黄色の縞が見られる。金属水素層で生じる電流が作り出す土星の固有磁場は地球磁場よりも若干弱く、木星磁場の1/12程度である。外側の大気は変化が少なく色彩の差異も無いが、長く持続する特徴が現れる事もある。風速は木星を上回る1800km/hに達するが、海王星程ではない。 土星は恒常的な環を持ち、9つが主要なリング状、3つが不定的な円弧である。これらはほとんどが氷の小片であり、岩石のデブリや宇宙塵も含まれる。知られている限り62個の衛星を持ち、うち53個には固有名詞がついている。これにはリングの中に存在する何百という小衛星(ムーンレット)は含まれない。タイタンは土星最大で太陽系全体でも2番目に大きな衛星であり、水星よりも大きく、衛星としては太陽系でただひとつ有意な大気を纏っている。 日本語で当該太陽系第六惑星を「土星」と呼ぶ由来は、古代中国において五惑星が五行説に当てはめて考えられた際、この星に土徳が配当されたからである。英語名サターンはローマ神話の農耕神サートゥルヌスに由来する。.

仮説上の天体と土星 · 土星と太陽系外惑星 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

仮説上の天体と地球 · 地球と太陽系外惑星 · 続きを見る »

地球型惑星

地球型惑星(ちきゅうがたわくせい、英語: terrestrial planet, telluric planet)とは、主に岩石や金属などの難揮発性物質から構成される惑星である。岩石惑星(英語: rocky planet)、固体惑星ともいい、太陽系では水星・金星・地球・火星の4惑星がこれにあたる。太陽系のうち、これらの惑星が位置する領域を内太陽系と呼称する場合がある。木星型惑星・天王星型惑星と比べ、質量が小さく密度が大きい。 惑星科学の観点からは月も性質上「地球型惑星」の一種として考えられることが多いという。しかし惑星の定義としては衛星が明確に除外されており、「惑星」の分類としての「地球型惑星」を言う場合、月については触れないのが普通である。.

仮説上の天体と地球型惑星 · 地球型惑星と太陽系外惑星 · 続きを見る »

バーナード星

バーナード星 (Barnard's star) とは、太陽系から約6光年の距離に位置する恒星である。 1916年にアメリカの天文学者であるエドワード・エマーソン・バーナードにより発見された。ケンタウルス座α星系に次いで、2番目に太陽系に近い恒星系である。.

バーナード星と仮説上の天体 · バーナード星と太陽系外惑星 · 続きを見る »

ダイヤモンド

ダイヤモンド( )は、炭素 (C) の同素体の1つであり、実験で確かめられている中では天然で最も硬い物質である。日本語で金剛石(こんごうせき)ともいう。ダイヤとも略される。結晶構造は多くが8面体で、12面体や6面体もある。宝石や研磨材として利用されている。ダイヤモンドの結晶の原子に不対電子が存在しないため、電気を通さない。 地球内部の非常に高温高圧な環境で生成されるダイヤモンドは定まった形で産出されず、また、角ばっているわけではないが、そのカットされた宝飾品の形から、菱形、トランプの絵柄(スート)、野球の内野、記号(◇)を指してダイヤモンドとも言われている。 ダイヤモンドという名前は、ギリシア語の (adámas 征服し得ない、屈しない)に由来する。イタリア語・スペイン語・ポルトガル語では diamánte(ディアマンテ)、フランス語では (ディアマン)、ポーランド語では (ディヤメント)、漢語表現では金剛石という。ロシア語では (ヂヤマント)というよりは (アルマース)という方が普通であるが、これは特に磨かれていないダイヤモンド原石のことを指す場合がある。磨かれたものについては (ブリリヤント)で総称されるのが普通。4月の誕生石である。石言葉は「永遠の絆・純潔・不屈」など。.

ダイヤモンドと仮説上の天体 · ダイヤモンドと太陽系外惑星 · 続きを見る »

ウィリアム・ハーシェル

ー・フレデリック・ウィリアム・ハーシェル(Sir Frederick William Herschel, 1738年11月15日 - 1822年8月25日)は、ドイツのハノーファー出身のイギリスの天文学者・音楽家・望遠鏡製作者。ドイツ語名はフリードリヒ・ヴィルヘルム・ヘルシェル(Friedrich Wilhelm Herschel)である。天王星の発見や赤外線放射の発見など、天文学における数多くの業績で知られる。.

ウィリアム・ハーシェルと仮説上の天体 · ウィリアム・ハーシェルと太陽系外惑星 · 続きを見る »

クトニア惑星

主星の手前を横切るHD 209458 bの想像図。ホット・ジュピターなどの外層の水素やヘリウムが失われることでクトニア惑星が誕生すると考えられている。 クトニア惑星(クトニアわくせい、chthonian planet) とは、巨大ガス惑星の水素とヘリウムの外層が失われることで形成されると言われる仮説上の惑星である。パリ天体物理学研究所のギョーム・エブラールらによって2003年に提唱された。巨大惑星の公転軌道が主星に近すぎる場合に、熱せられた大気が流失し形成されると考えられており、クトニア惑星は蒸発前の惑星の固体コアに相当する。主成分は岩石や金属で、多くの点で地球型惑星と共通した性質を持つHébrard G., Lecavelier Des Étangs A., Vidal-Madjar A., Désert J.-M., Ferlet R. (2003),, Extrasolar Planets: Today and Tomorrow, ASP Conference Proceedings, Vol.

クトニア惑星と仮説上の天体 · クトニア惑星と太陽系外惑星 · 続きを見る »

コア無し惑星

ア無し惑星(コアなしわくせい、Coreless planet)は、惑星分化を終えているが、金属質の核を持たない、仮説上の地球型惑星の種類である。惑星は、事実上、巨大な岩石質のマントルとなる。.

コア無し惑星と仮説上の天体 · コア無し惑星と太陽系外惑星 · 続きを見る »

冥王星

冥王星(めいおうせい、134340 Pluto)は、太陽系外縁天体内のサブグループ(冥王星型天体)の代表例とされる、準惑星に区分される天体である。1930年にクライド・トンボーによって発見され、2006年までは太陽系第9惑星とされていた。離心率が大きな楕円形の軌道を持ち、黄道面から大きく傾いている。直径は2,370kmであり、地球の衛星である月の直径(3,474km)よりも小さい。冥王星の最大の衛星カロンは直径が冥王星の半分以上あり、それが理由で二重天体とみなされることもある。.

仮説上の天体と冥王星 · 冥王星と太陽系外惑星 · 続きを見る »

炭素惑星

炭素惑星の想像図。炭化水素のため赤みを帯びた黒色の表面をしていると予測されている。 炭素惑星(carbon planet)とは、アメリカの天体物理学者 Marc Kuchner が提唱した惑星の類型。炭素やその化合物を主な成分とする固体の天体である。英語では diamond planet(ダイヤモンド惑星)やcarbide planet(炭化物惑星)とも呼ばれる(ただし前者については惑星全体がダイヤモンドというわけではない)。2011年の時点では実際に確認された例はなく、理論上の存在である。.

仮説上の天体と炭素惑星 · 太陽系外惑星と炭素惑星 · 続きを見る »

白色矮星

白色矮星(はくしょくわいせい、white dwarf)は、恒星が進化の終末期にとりうる形態の一つ。質量は太陽と同程度から数分の1程度と大きいが、直径は地球と同程度かやや大きいくらいに縮小しており、非常に高密度の天体である。 シリウスの伴星(シリウスB)やヴァン・マーネン星など、数百個が知られている。太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている。.

仮説上の天体と白色矮星 · 太陽系外惑星と白色矮星 · 続きを見る »

食変光星

アルゴル型食変光星の変光の原理(動画)。実際は、青白い主星の方が、赤色がかった伴星より半径が小さい場合がほとんどである。動画の例では、食が皆既食・金環食なので、実際の光度曲線は食の中央が平坦になる。 食変光星(しょくへんこうせい)(eclipsing variable (star))とは、共通重心の周りを回る2つの星が互いの光を覆い隠し合うことによって、みかけの明るさ(2星の合成光度)が変わるタイプの変光星である。そのため、食変光星は必ず連星系を形成している。また、地球から見てこの連星系が食変光星に見えるためには、2つの星の軌道面が、地球と連星系とを結んだ直線を含む平面の近くに存在する必要がある。一般的に、恒星自身の明るさは変わらず、規則的に変光するのが特徴である(ただし、後述するカシオペヤ座RZ星のように、連星系の一方が脈動変光星の場合はこの限りではない)。なお、「食変光星」は変光星としての分類であり、連星の分類として食連星(しょくれんせい)(eclipsing binary)と呼ばれることもある。.

仮説上の天体と食変光星 · 太陽系外惑星と食変光星 · 続きを見る »

褐色矮星

褐色矮星(かっしょくわいせい、英:brown dwarf)とは、その質量が木星型惑星より大きく、赤色矮星より小さな超低質量天体の分類である。軽水素 (H) の核融合を起こすには質量が小さすぎるために恒星になることができない天体。.

仮説上の天体と褐色矮星 · 太陽系外惑星と褐色矮星 · 続きを見る »

赤色矮星

赤色矮星のイメージ 赤色矮星(せきしょくわいせい、red dwarf)とは、主系列星の中で特に小さい恒星のグループ。主にスペクトル型M型の主系列星を指すが、低温のK型主系列星の一部を含めることもある。.

仮説上の天体と赤色矮星 · 太陽系外惑星と赤色矮星 · 続きを見る »

重力

重力(じゅうりょく)とは、.

仮説上の天体と重力 · 太陽系外惑星と重力 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

仮説上の天体と連星 · 太陽系外惑星と連星 · 続きを見る »

掩蔽

1997年7月29日のアルデバランの掩蔽。アルデバランが月の暗縁から出現した直後。 掩蔽(えんぺい、)とは、ある天体が観測者と他の天体の間を通過するために、その天体が隠される現象である。.

仮説上の天体と掩蔽 · 太陽系外惑星と掩蔽 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

仮説上の天体と恒星 · 太陽系外惑星と恒星 · 続きを見る »

潮汐力

潮汐力(ちょうせきりょく、英語:tidal force)とは、重力によって起こる二次的効果の一種で、潮汐の原因である。起潮力(きちょうりょく)とも言う。潮汐力は物体に働く重力場が一定でなく、物体表面あるいは内部の場所ごとに異なっているために起こる。ある物体が別の物体から重力の作用を受ける時、その重力加速度は、重力源となる物体に近い側と遠い側とで大きく異なる。これによって、重力を受ける物体は体積を変えずに形を歪めようとする。球形の物体が潮汐力を受けると、重力源に近い側と遠い側の2ヶ所が膨らんだ楕円体に変形しようとする。.

仮説上の天体と潮汐力 · 太陽系外惑星と潮汐力 · 続きを見る »

木星

記載なし。

仮説上の天体と木星 · 太陽系外惑星と木星 · 続きを見る »

木星型惑星

木星型惑星(もくせいがたわくせい、英語: jovian planet)とは、惑星を分類する場合の、木星と類似の惑星の総称。大惑星(英語: giant planet)ともいう。.

仮説上の天体と木星型惑星 · 太陽系外惑星と木星型惑星 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

仮説上の天体と月 · 太陽系外惑星と月 · 続きを見る »

海王星

海王星(かいおうせい、Neptunus、Neptune)は、太陽系の太陽に近い方から8番目の惑星である。太陽系惑星の中では最も太陽から遠い位置を公転している。名称のNeptuneは、ローマ神話における海神ネプトゥーヌスにちなむ。.

仮説上の天体と海王星 · 太陽系外惑星と海王星 · 続きを見る »

海洋惑星

海洋惑星(Ocean planet)とは仮説上の惑星の種類である。全体が深さ数百kmの厚い水の層に覆われた惑星で、氷を多く含んだ惑星が惑星系の内側に移動した時に形成される。 この言葉は単に「海を持つ惑星」という意味でも用いられるが、当記事では前述の特徴を持つ惑星について記述する。.

仮説上の天体と海洋惑星 · 太陽系外惑星と海洋惑星 · 続きを見る »

2009年

この項目では、国際的な視点に基づいた2009年について記載する。.

2009年と仮説上の天体 · 2009年と太陽系外惑星 · 続きを見る »

上記のリストは以下の質問に答えます

仮説上の天体と太陽系外惑星の間の比較

太陽系外惑星が235を有している仮説上の天体は、236の関係を有しています。 彼らは一般的な31で持っているように、ジャカード指数は6.58%です = 31 / (236 + 235)。

参考文献

この記事では、仮説上の天体と太陽系外惑星との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »