ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

外積代数と線型代数学

ショートカット: 違い類似点ジャカード類似性係数参考文献

外積代数と線型代数学の違い

外積代数 vs. 線型代数学

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。. 線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

外積代数と線型代数学間の類似点

外積代数と線型代数学は(ユニオンペディアに)共通で27ものを持っています: 基底可換体双対ベクトル空間対称群小行列式交代行列ハメル次元レオポルト・クロネッカーヘルマン・グラスマンテンソル代数ベクトル空間アーサー・ケイリーカール・ワイエルシュトラスジュゼッペ・ペアノジェームス・ジョセフ・シルベスター内積線型写像線型結合線型独立線型部分空間行列の階数行列式抽象代数学核 (代数学)1844年1888年20世紀

基底

* 一般.

基底と外積代数 · 基底と線型代数学 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

可換体と外積代数 · 可換体と線型代数学 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

双対ベクトル空間と外積代数 · 双対ベクトル空間と線型代数学 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

外積代数と対称群 · 対称群と線型代数学 · 続きを見る »

小行列式

線型代数学において,行列 の小行列式(しょうぎょうれつしき,minor, minor determinant)とは, から1列以上の行や列を取り除いて得られる小さい正方行列の行列式である.正方行列から行と列をただ1つずつ取り除いて得られる小行列式 (first minors; 第一小行列式) は行列の余因子 (cofactor) を計算するのに必要で,これは正方行列の行列式や逆行列の計算に有用である..

外積代数と小行列式 · 小行列式と線型代数学 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

交代行列と外積代数 · 交代行列と線型代数学 · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

ハメル次元と外積代数 · ハメル次元と線型代数学 · 続きを見る »

レオポルト・クロネッカー

レオポルト・クロネッカー(Leopold Kronecker, 1823年12月7日 - 1891年12月29日)はドイツの数学者である。リーグニッツ(現在のポーランド・レグニツァ Legnica)生まれ。ユダヤ系。 彼は、ヤコビ、ディリクレ、アイゼンシュタイン、クンマーといったドイツの先達の後に立って、また、パリ滞在中にエルミートなどの影響によって、群論、モジュラー方程式、代数的整数論、楕円関数、また行列式の理論において大きな業績を残した。クロネッカーの名前は現在でも、クロネッカーのデルタ、クロネッカー積、クロネッカー=ウェーバーの定理、クロネッカーの青春の夢などに見ることができる。.

レオポルト・クロネッカーと外積代数 · レオポルト・クロネッカーと線型代数学 · 続きを見る »

ヘルマン・グラスマン

ヘルマン・ギュンター・グラスマン(Hermann Günther Graßmann, 1809年4月15日 - 1877年9月26日)はドイツの数学者・物理学者・言語学者。 まず数学を研究し、現在グラスマン代数と呼ばれる成果をあげたが、時代に先んじていたため認められなかった。しかし他の分野でも才能を開花させ、色彩論および言語学においてそれぞれグラスマンの法則と呼ばれる業績を残した。.

ヘルマン・グラスマンと外積代数 · ヘルマン・グラスマンと線型代数学 · 続きを見る »

テンソル代数

数学におけるベクトル空間 上のテンソル代数(テンソルだいすう、tensor algebra) または は 上の任意階のテンソル全体がテンソル積を乗法として成す体上の多元環である。これは多元環をベクトル空間とみなすの左随伴となるという意味において 上の自由多元環、すなわち普遍性を満たすという意味で を含む多元環として「最も一般」のものである。 テンソル代数はまた二種類の余代数構造を持つ。一つは簡素で双代数を定めないが、もう一つはより複雑なもので双代数を導き、さらに対蹠射を以ってホップ代数へ拡張することができる。; 注意: 本項において多元環(代数)は単位的かつ結合的なものと仮定する。.

テンソル代数と外積代数 · テンソル代数と線型代数学 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

ベクトル空間と外積代数 · ベクトル空間と線型代数学 · 続きを見る »

アーサー・ケイリー

アーサー・ケイリー(、、1821年8月16日 - 1895年1月26日)は、イギリスの数学者、弁護士。行列に関するケイリー・ハミルトンの定理で有名。.

アーサー・ケイリーと外積代数 · アーサー・ケイリーと線型代数学 · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

カール・ワイエルシュトラスと外積代数 · カール・ワイエルシュトラスと線型代数学 · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

ジュゼッペ・ペアノと外積代数 · ジュゼッペ・ペアノと線型代数学 · 続きを見る »

ジェームス・ジョセフ・シルベスター

ェームス・ジョセフ・シルベスター(James Joseph Sylvester, 1814年9月3日 - 1897年3月15日)は、イギリスの数学者。 1838年からユニヴァーシティ・カレッジ・ロンドン教授、1877年に渡米してジョンズ・ホプキンス大学教授、1883年からオックスフォード大学の幾何学の Savillian 教授を歴任した。1839年王立協会フェロー選出。 w:American Journal of Mathematicsを創刊。シルベスター行列などに名を残している。.

ジェームス・ジョセフ・シルベスターと外積代数 · ジェームス・ジョセフ・シルベスターと線型代数学 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

内積と外積代数 · 内積と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

外積代数と線型写像 · 線型代数学と線型写像 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

外積代数と線型結合 · 線型代数学と線型結合 · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

外積代数と線型独立 · 線型代数学と線型独立 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

外積代数と線型部分空間 · 線型代数学と線型部分空間 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

外積代数と行列の階数 · 線型代数学と行列の階数 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

外積代数と行列式 · 線型代数学と行列式 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

外積代数と抽象代数学 · 抽象代数学と線型代数学 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

外積代数と核 (代数学) · 核 (代数学)と線型代数学 · 続きを見る »

1844年

記載なし。

1844年と外積代数 · 1844年と線型代数学 · 続きを見る »

1888年

記載なし。

1888年と外積代数 · 1888年と線型代数学 · 続きを見る »

20世紀

摩天楼群) 20世紀(にじっせいき、にじゅっせいき)とは、西暦1901年から西暦2000年までの100年間を指す世紀。2千年紀における最後の世紀である。漢字で二十世紀の他に、廿世紀と表記される場合もある。.

20世紀と外積代数 · 20世紀と線型代数学 · 続きを見る »

上記のリストは以下の質問に答えます

外積代数と線型代数学の間の比較

線型代数学が121を有している外積代数は、113の関係を有しています。 彼らは一般的な27で持っているように、ジャカード指数は11.54%です = 27 / (113 + 121)。

参考文献

この記事では、外積代数と線型代数学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »