ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

固有値と対称行列

ショートカット: 違い類似点ジャカード類似性係数参考文献

固有値と対称行列の違い

固有値 vs. 対称行列

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。. 線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

固有値と対称行列間の類似点

固有値と対称行列は(ユニオンペディアに)共通で8ものを持っています: 対角化交代行列二次形式ヒルベルト空間エルミート行列固有値線型代数学直交行列

対角化

対角化(たいかくか、diagonalization)とは、正方行列を適当な線形変換によりもとの行列と相似な対角行列に変形することを言う。あるいは、ベクトル空間の線形写像に対し、空間の基底を取り替え、その作用が常にある方向(固有空間)へのスカラー倍(固有値)として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。.

固有値と対角化 · 対称行列と対角化 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

交代行列と固有値 · 交代行列と対称行列 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

二次形式と固有値 · 二次形式と対称行列 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

ヒルベルト空間と固有値 · ヒルベルト空間と対称行列 · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

エルミート行列と固有値 · エルミート行列と対称行列 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

固有値と固有値 · 固有値と対称行列 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

固有値と線型代数学 · 対称行列と線型代数学 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

固有値と直交行列 · 対称行列と直交行列 · 続きを見る »

上記のリストは以下の質問に答えます

固有値と対称行列の間の比較

対称行列が52を有している固有値は、86の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は5.80%です = 8 / (86 + 52)。

参考文献

この記事では、固有値と対称行列との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »