ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

反転幾何学

索引 反転幾何学

初等幾何学における反転幾何学(はんてんきかがく、inversive geometry)は、平面幾何学において反転 (inversion) と呼ばれる種類の変換を一般化したものに関して保たれる図形の性質について研究する。 平面上の反転変換は、角を保ち(等角性)、一般化された円を一般化された円に写す(「円円対応」)ような写像になっている。ここで「一般化された円」というのは、円または(無限遠点を中心とする半径無限大の円と見做される)直線のいずれかであることを意味する。初等幾何学における難しい問題が、反転を施すと扱いやすくなるというようなことも少なくない。 このような平面上の反転の概念を、より高次元の場合に一般化することができる。.

49 関係: 半径単位円単位行列双曲幾何学変換 (数学)変換幾何学対合射影幾何学不変量中点三角形ポワンカレの円板モデルメビウス変換ヤコビ行列ユークリッド幾何学ユークリッド空間リーマン球面フェリックス・クラインニコライ・ロバチェフスキー初等幾何学エルランゲン・プログラムオイラー線ステレオ投影ソディの6球連鎖円 (数学)円周内接円写像図形図形の合同空間 (数学)等角写像群 (数学)群の生成系無限無限遠点直交直交行列直線銀林浩行列の相似複素共役解析関数角度超平面超球面自然対数逆数恒等写像

半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

新しい!!: 反転幾何学と半径 · 続きを見る »

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 反転幾何学と単位円 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 反転幾何学と単位行列 · 続きを見る »

双曲幾何学

双曲幾何学(そうきょくきかがく、)またはボヤイ・ロバチェフスキー幾何学 とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユークリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。 ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。 双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。 例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。 このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。.

新しい!!: 反転幾何学と双曲幾何学 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 反転幾何学と変換 (数学) · 続きを見る »

変換幾何学

数学における変換幾何学(へんかんきかがく、transformation geometry)あるいは変換の幾何学 (transformational geometry) は、幾何学をの成す群とそれらの作用に関する不変量に立脚して研究する方法論に用いられる数学的および教育学的な名称である。これは、作図に着目する的手法に対立するものである。 例えば、変換の幾何学において二等辺三角形の性質は、それが適当な直線に関する鏡映によって自身に写されるという事実から演繹される。これは判定法による古典的証明とは対照的である。 幾何学の基礎付けとして変換の幾何学を用いる最初の体系的な試みは、19世紀にエルランゲン目録の名のもとにフェリックス・クラインによって為された。ほぼ一世紀に亙りこのアプローチは数学の研究会に限られたままであったが、20世紀には数学教育のための変換の幾何学の開拓の努力が進められた。アンドレイ・コルモゴロフはロシアにおける幾何学教育改革への提言の一環として、(集合論とともに)このアプローチを含めた。これらの努力は1960年代アメリカでと呼ばれる数学の全般改革へと繋がっていった。.

新しい!!: 反転幾何学と変換幾何学 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 反転幾何学と対合 · 続きを見る »

射影幾何学

数学における射影幾何学(しゃえいきかがく、projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系(斉次座標系)の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば不変式論、代数幾何学イタリア学派、あるいは古典群の研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては総合幾何学 (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と射影微分幾何学(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。.

新しい!!: 反転幾何学と射影幾何学 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 反転幾何学と不変量 · 続きを見る »

中点三角形

中点三角形(ちゅうてんさんかくけい)は、三角形の3辺の中点を頂点とする三角形である。.

新しい!!: 反転幾何学と中点三角形 · 続きを見る »

ポワンカレの円板モデル

ポワンカレ円板模型の、大斜方切頭 3,7 充填. 双曲三次元空間内の二十面体ハニカム格子と見たポワンカレ球体模型 非ユークリッド幾何学におけるポワンカレ円板模型(ポワンカレえんばんもけい、Poincaré disk model)、ポワンカレ球体模型(ポワンカレきゅうたいもけい、Poincaré ball model)あるいは共形円板模型 (conformal disk model) とは、n-次元双曲幾何学のモデルで、その幾何のもとでの各点が n-次元円板あるいは球体に属し、かつその幾何のもとでの直線がその円板に含まれる円板の境界と直交する円弧または直径によって与えられるものを言う。円板模型は、クライン模型、ポワンカレ上半平面模型とともに、によって提案され、ベルトラミはそれらを用いて双曲幾何学とユークリッド幾何学との等無矛盾性 (equiconsistency) を示した。.

新しい!!: 反転幾何学とポワンカレの円板モデル · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: 反転幾何学とメビウス変換 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 反転幾何学とヤコビ行列 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 反転幾何学とユークリッド幾何学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 反転幾何学とユークリッド空間 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: 反転幾何学とリーマン球面 · 続きを見る »

フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

新しい!!: 反転幾何学とフェリックス・クライン · 続きを見る »

ニコライ・ロバチェフスキー

N・I・ロバチェフスキー ニコライ・イワノビッチ・ロバチェフスキー(Никола́й Ива́нович Лобаче́вский, Nikolai Ivanovich Lobachevsky, 1792年12月1日 - 1856年2月24日(グレゴリオ暦)/1792年11月20日 - 1856年2月12日(ユリウス暦))はロシアの数学者である。 カザン大学に学び、21歳で同大学教授となり、1827年から1846年には学長も兼ねていた。1826年に幾何学の基礎に関する論文をカザン大学の物理・数学科に提出したが、刊行されずに失われた。1829年に大学学報にその学説を発表しさらに『幾何学の新原理並びに平行線の完全な理論』 (Новые начала геометрии с полною теорией параллельных) の中で詳しく展開した。ついで Geometrische Untersuchungen zur Theorie der Parallellinien (1840年) をベルリンで刊行した。これらによってロバチェフスキーはヤノーシュ・ボヤイとは独立に非ユークリッド幾何学の創始者となり、この新幾何学の自然的根拠についても深い省察を与えた。卓越した教育者であり、20年以上学長を務めたカザン大学で後進の指導を手がけ、レーニンの父であるイリヤ・ニコラエヴィチ・ウリヤノフはロバチェフスキーの推薦でドヴォリャンスキー学院の物理と数学の上席教師となった。.

新しい!!: 反転幾何学とニコライ・ロバチェフスキー · 続きを見る »

初等幾何学

初等幾何学(しょとうきかがく、elementary geometry矢野健太郎編、東京理科大学数学教育研究所第2版 編集『』、共立出版、2010年、「初等幾何学」より。ISBN 978-4-320-01931-7)は、二次元(点や直線や円など)・三次元(錘体や球など)の図形をユークリッド幾何学的に扱う数学、幾何学の分野である。.

新しい!!: 反転幾何学と初等幾何学 · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: 反転幾何学とエルランゲン・プログラム · 続きを見る »

オイラー線

イラー線(オイラーせん、 line )は、三角形の外心・重心・垂心を通る直線であり、その名称は存在を見出した数学者レオンハルト・オイラーに由来している。.

新しい!!: 反転幾何学とオイラー線 · 続きを見る »

ステレオ投影

テレオ投影(ステレオとうえい、stereographic projection)は、球面を平面に投影する方法の一つである。ステレオ投影は複素解析学、地図学、結晶学、写真術など様々な分野で重要である。 stereographic projection の訳語は分野によって異なる。ステレオ投影は主に物理学や機械工学において用いられる。数学においては写像という意味で立体射影あるいはステレオグラフ射影、地図学では図法という意味で平射図法またはステレオ図法と呼ばれる。このように訳語が異なってはいるが、内容は全て同一視できる。 ステレオ投影は、数学的には写像として定義される。定義域は、球面から光源の一点を除いたところである。写像は滑らかかつ全単射である。また、等角写像、すなわち角度が保存される。一方、長さや面積は保存されない。これはとくに光源点付近では顕著である。 すなわち、ステレオ投影は、いくらかの避けられない妥協を含む、球面を平面に描く方法である。実際面では、コンピュータや、ウルフネットまたはステレオネットと呼ばれるなどを使って、投影図が描かれる。.

新しい!!: 反転幾何学とステレオ投影 · 続きを見る »

ソディの6球連鎖

ディの6球連鎖(ソディのろくきゅうれんさ、Soddy's hexlet)とは、イギリスの化学者フレデリック・ソディが1937年に学術雑誌ネイチャーに発表した、幾何学の定理に現れるネックレス状の球の連鎖である。6球連鎖の定理の主張によれば、外球 O0に内接し、かつ互いに接している2つの核球 O1, O2があるとき、O0に内接し、O1, O2と外接し、隣同士が外接する球の連鎖数は常に6となる。また、連鎖する6球 S1, …, S6の半径をr1, …, r6とする場合、それらは という関係を満たす日経サイエンス 。なお、同じ内容がそれより110年以上も前の1822年に日本の算額の問題として取り上げられ、解かれている。.

新しい!!: 反転幾何学とソディの6球連鎖 · 続きを見る »

円(えん、まる)(ゑん)(Yen).

新しい!!: 反転幾何学と円 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 反転幾何学と円 (数学) · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 反転幾何学と円周 · 続きを見る »

内接円

初等幾何学において、与えられた多角形の内接円(ないせつえん、incircle)は、その多角形に内接 (inscribe) する—この場合はその多角形の内部にあり全ての辺に接する—円を言う。内接円の中心を内心 (incenter) という。 全ての多角形に内接円が存在するわけではないが、全ての三角形と正多角形には内接円が存在する。内接円が存在する場合、その多角形の内部にある最大面積の円になる。.

新しい!!: 反転幾何学と内接円 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 反転幾何学と写像 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 反転幾何学と図形 · 続きを見る »

図形の合同

ユークリッド幾何学において、二つの図形が合同(ごうどう、congruence)とは、それらの形と大きさが同じであるということを数学的に表した概念である。場合によっては、形と大きさが同じである他に、一方が他方の鏡像である場合を含める。つまり、より厳密に言えば、二つの点集合が(互いに)合同であるとは、一方が他方に等距変換(すなわち、平行移動、回転および鏡映という剛体運動 (rigid motion) の組み合わせ)で移るとき、かつそのときに限り言う。しかるに二つの異なる平面図形が互いに合同ならば、いずれか一方の図形を位置を変え、あるいは鏡像反転して(しかし大きさは変えずに)他方の図形に一致させることができ、また紙の上に書いたそれらを切り取って(必要ならば紙を裏返して)ぴったり重ねることができる。 初等幾何学では以下のような形で「合同」という語がしばしば用いられる.

新しい!!: 反転幾何学と図形の合同 · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: 反転幾何学と空間 (数学) · 続きを見る »

等角写像

矩形格子(上)と等角写像 ''f'' によるその像(下)。''f'' が、90°で交差している2つの直線をなおも90°で交差している2つの曲線へ移していることが確認できる。 等角写像(とうかくしゃぞう、conformal transformation)とは、2次元以上のユークリッド空間からユークリッド空間への写像であって、任意の点の近傍の微小な2つの線分が、その成す角を保存するように写像されるものをいう。いいかえれば、座標変換の関数行列が回転行列のスカラー倍となるものである。即ち、平面上の一つの図形を他の図形に変換(写像)したとき、図形上の二曲線の交角はその写像によっても等しく保たれるような写像を等角写像と呼ぶ。一見すると、原形から大きく図形が変わったように見えても、対応する微小部分に注目すると、原形の図形と相似になっているのが、等角写像である。等角写像は、複素関数論と深い関係があり、工学上、流体の挙動の記述などにおいて非常に有用である。.

新しい!!: 反転幾何学と等角写像 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 反転幾何学と群 (数学) · 続きを見る »

群の生成系

抽象代数学において、群の生成系、生成集合 (generating set of a group) は部分集合であって群のすべての元が(群演算のもとで)その部分集合の有限個の元とそれらの逆元の結合として表現できるものである。 言い換えると、S が群 G の部分集合であれば、、S で生成される部分群 (subgroup generated by S)、は S のすべての元を含む G の最小の部分群である、すなわち S のすべての元を含む部分群すべてに渡る共通部分である。同じことだが、<S> は S の元とそれらの逆元の有限積として書ける G のすべての元からなる部分群である。 G.

新しい!!: 反転幾何学と群の生成系 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 反転幾何学と無限 · 続きを見る »

無限遠点

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。 例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと) ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。.

新しい!!: 反転幾何学と無限遠点 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: 反転幾何学と直交 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 反転幾何学と直交行列 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 反転幾何学と直線 · 続きを見る »

銀林浩

銀林 浩(ぎんばやし こう、1927年8月9日 - )は、日本の数学者、数学教育運動家、明治大学名誉教授。 東京出身。東京大学卒。遠山啓とともに考案した四則計算の指導体系「水道方式」を提唱。1962年、日本大学講師を退職、明治大学講師。1969年、経営学部教授。1980年、数学教育協議会委員長。2000年、明治大学を定年退任、名誉教授。息子の銀林純と共著で数学の英単語の本を出している。祖父は官選埼玉県知事だった銀林綱男。.

新しい!!: 反転幾何学と銀林浩 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: 反転幾何学と行列の相似 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 反転幾何学と複素共役 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 反転幾何学と解析関数 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: 反転幾何学と角度 · 続きを見る »

超平面

初等幾何学における超平面(ちょうへいめん、hyperplane)の概念は、二次元の平面をそれ以外の次元へ一般化するものである。''n''-次元空間における超平面とは、次元が n − 1 の平坦な部分空間をいう。その特質として、一つの超平面は全体空間を二つの半空間に分割する。.

新しい!!: 反転幾何学と超平面 · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: 反転幾何学と超球面 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 反転幾何学と自然対数 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 反転幾何学と逆数 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 反転幾何学と恒等写像 · 続きを見る »

ここにリダイレクトされます:

反転 (幾何学)反転の幾何学反転変換反転写像反転操作

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »