ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

原子と長岡半太郎

ショートカット: 違い類似点ジャカード類似性係数参考文献

原子と長岡半太郎の違い

原子 vs. 長岡半太郎

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。. 長岡 半太郎(ながおか はんたろう、1865年8月19日(慶応元年6月28日) - 1950年(昭和25年)12月11日)は、日本の物理学者。土星型原子モデル提唱などの学問的業績を残した。また、東京帝国大学教授として多くの弟子を指導し、初代大阪帝国大学総長や帝国学士院院長などの要職も歴任した。1937年(昭和12年)、第一回文化勲章受章。正三位勲一等旭日大綬章追贈。.

原子と長岡半太郎間の類似点

原子と長岡半太郎は(ユニオンペディアに)共通で21ものを持っています: 原子核原子模型帯電ラザフォードの原子模型ラザフォード散乱ルートヴィッヒ・ボルツマンボーアの原子模型ブドウパンモデルフランスドイツニールス・ボーアアーネスト・ラザフォードジョゼフ・ジョン・トムソン粒子量子力学量子論電子電磁波1904年1911年1913年

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

原子と原子核 · 原子核と長岡半太郎 · 続きを見る »

原子模型

原子模型(げんしもけい、atomic theory, atomic model)とは、原子の内部の構造についてのモデルである。.

原子と原子模型 · 原子模型と長岡半太郎 · 続きを見る »

帯電

帯電(たいでん)は、物体が電気を帯びる現象である。 別の物体から電子を奪った場合には負に帯電し、逆の場合は正に帯電する。奪うことを引き起こす力は別に議論されなければならないが、帯電したまま動かずにいる電気を静電気という。絶縁体同士を摩擦することなどにより、この現象を起こすことができる。たとえばエボナイト棒を乾いた布でこすったり、プラスティックの下敷きで髪をこすったりすると、それぞれ帯電する。帯電した物体が他の物体を引き寄せるなどの性質(クーロン力)を持っていることは、古代から知られていた。近代になってから、この現象の本格的な研究が始まり、これをきっかけに、電磁気学が発展していった。近年ではこうした帯電現象を利用した様々な装置が日常生活に浸透してきている。 Category:静電気 Category:物理化学の現象.

原子と帯電 · 帯電と長岡半太郎 · 続きを見る »

ラザフォードの原子模型

ラザフォードの原子模型は、アーネスト・ラザフォードが提案した原子の内部構造に関する原子模型。惑星モデルとも。ラザフォードは1909年に有名なガイガー=マースデンの実験を指揮し、1911年にこの原子模型を発表。J・J・トムソンの「ブドウパンモデル」が正しくないと示唆した。実験結果に基づき、従来よりも小さな中心核(すなわち原子核)に原子量の大部分と電荷が集中しているとした原子模型である。 ラザフォードの原子模型では、原子内での電子構造については何も進展していなかった。その点についてラザフォードは単に、太陽の周りを回る惑星のように多数の小さな電子が中心核の周囲を回っているか、土星の輪のように回っているという従来からあった原子模型について言及しているだけである。しかし、より小さな中心核に質量のほとんどが集中しているとしたことで太陽系との類似点が大きくなり、従来よりも太陽と惑星の比喩が的確となった。.

ラザフォードの原子模型と原子 · ラザフォードの原子模型と長岡半太郎 · 続きを見る »

ラザフォード散乱

ラザフォード散乱(ラザフォードさんらん、Rutherford scattering)とは、クーロン相互作用による荷電粒子間のを言う。1911年、アーネスト・ラザフォードにより説明された物理現象であり、ボーア模型の先駆けとなったラザフォードの惑星型原子模型の発展につながった。現在では、ラザフォード後方散乱分光という元素組成分析手法に利用されている。ラザフォード散乱は、静電気力(クーロン力)のみに依存し、粒子間の最接近距離はクーロンポテンシャルのみにより決定されるため、初めはクーロン散乱と呼ばれた。古典的なアルファ粒子の金原子核によるラザフォード散乱においては、散乱された後の粒子の持つエネルギーと速度が散乱前と変わらないので、「弾性散乱」の例といえる。.

ラザフォード散乱と原子 · ラザフォード散乱と長岡半太郎 · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

ルートヴィッヒ・ボルツマンと原子 · ルートヴィッヒ・ボルツマンと長岡半太郎 · 続きを見る »

ボーアの原子模型

ボーアの原子模型(ボーアのげんしもけい、Bohr's model)とは、ラザフォードの原子模型長岡半太郎の原子模型を発展させたものであるといわれる。のもつ物理学的矛盾を解消するために考案された原子模型である。この模型は、水素原子に関する実験結果を見事に説明し、量子力学の先駆け(前期量子論)となった。.

ボーアの原子模型と原子 · ボーアの原子模型と長岡半太郎 · 続きを見る »

ブドウパンモデル

原子のブドウパンモデルの模式図。トムソンの数理モデルでは、"corpuscles"(電子)が無作為ではなく回転する環にそって配置されている。 ブドウパンモデルまたはプラムプディングモデル(plum pudding model)とは、原子の内部構造に関する原子模型の一つ。J・J・トムソンが、(まだ原子核が発見されていなかった)1904年に発表したモデルが特に知られる。この模型では、正の電荷のスープの中に負の電荷を持った微粒子が散らばっていて、全体として電荷の均衡が保たれているとしている。ちょうどプラムの果実が負の電荷を持つ粒子で、それが正の電荷を持つ「プディング」に取り囲まれているようであることから「プラムプディングモデル」と名付けられた。日本では当時「プラム」も「プディング」もなじみがなかったため「ブドウパン」と訳された。 トムソンのモデルでは、電子は原子内で静止しているわけではなく、環状の軌道を描いて運動しているとされた。単純化のために、軌道は平面上の同心円環に限定されたヘリガ・カーオ「20世紀物理学史」 名古屋大学出版会。一例を挙げると、電子数37の原子では、4つの同心円環に内側から1、8、12、16個の電子が入る。円軌道を描く電子は電磁波を放射してエネルギーを失うが、電子数が増えるにつれて放射が劇的に減少するため、力学的にも放射的にも安定とされた(1904年当時、物質中の電子数は分かっておらず、水素原子にも数千個の電子がある可能性が考えられていた)。 それまでトムソンは原子が非物質的な渦巻で構成されているとする「星雲原子 (nebular atom)」仮説を提唱していた。ブドウパンモデルでは負の電荷を持つ微粒子が導入されたものの、正の電荷を担っているのが何なのかがわからず、相変わらず星雲のようなあやふやな定義に留まっていた。 トムソンのモデルは1904年から1910年までの時期でもっとも人気のあった原子モデルだった。その理由の一つとして、このモデルは、当時提唱されていた正の中心核をもつ原子模型と比較すると、安定性が高かった吉田伸夫「光の場、電子の海―量子場理論への道」 新潮社。例えば、中心核をもつモデルでは、軌道が乱れると徐々にエネルギーを失って核と電子が合体してしまうが、ブドウパンモデルでは軌道が崩れても周囲からエネルギーを吸収して再び安定軌道に戻ることができる。 1904年のトムソンのモデルは、1909年のガイガー=マースデンの実験で反証(ラザフォード散乱)が示され、1911年にアーネスト・ラザフォードがその解釈をする過程で否定された。すなわち、原子には非常に小さな核となる部分があり、そこに正の電荷が集中していることがわかった(金の場合、電子約100個に対応する正の電荷があることが判明した)。これによりラザフォードの原子模型が新たに提唱された。1913年、ヘンリー・モーズリーが原子核の電荷と原子番号が非常に近いことを示し、Antonius Van den Broek が原子番号は原子核の電荷と等しいということを示唆した。同年、ボーアの原子模型が提唱され、原子番号と等しい正の電荷を持つ原子核の周りをそれと同じ個数の電子が球状の軌道殻上で運動しているという原子模型が確立された。 トムソンの原子模型はイギリスの伝統的な菓子であるプラムプディングのようであることから、そのように名付けられた(トムソン本人の命名ではない)。トムソンの論文は1904年3月、学術雑誌 Philosophical Magazine に掲載された。トムソンは次のように記している。 トムソンの原子模型では、電子は正に帯電した球形の雲の中を動き、電子が大きな軌道を描くとその内側の正の電荷の量が大きくなるため、内側に引っ張られる力が強くなり、軌道が安定するとされている。また電子は環状の軌道を描いて運動しており、電子同士の相互作用でさらに軌道が安定するとされる。トムソンはいくつかの元素の既知の主要なスペクトル線をこの模型で説明しようとしたが、あまりうまくいかなかった。また、2次元平面上の電子の運動を、3次元へ拡張することは数学的に難しく実行できなかった。いずれにしてもトムソンのブドウパンモデル(および同じ1904年に長岡半太郎が提唱した土星型原子模型)は、後のボーアの原子模型へと至る重要な一歩だったと言える。 トムソンのモデルは、正電荷が連続的に広がっていることを除けば土星型モデルに似ており、ブドウパン(やプラムプディング)の語感から受ける、粒子が乱雑に分布している印象とは異なっているアルベルト・マルチネス「ニュートンのりんご、アインシュタインの神: 科学神話の虚実」 青土社。そのため「ブドウパン」や「プラムプディング」という呼び方は不適切と評されることもある。1900年頃に発表されたケルビン卿の原子モデルは、より右上図のようなブドウパン(やプラムプディング)に近いモデルである。.

ブドウパンモデルと原子 · ブドウパンモデルと長岡半太郎 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

フランスと原子 · フランスと長岡半太郎 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

ドイツと原子 · ドイツと長岡半太郎 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

ニールス・ボーアと原子 · ニールス・ボーアと長岡半太郎 · 続きを見る »

アーネスト・ラザフォード

初代ネルソンのラザフォード男爵アーネスト・ラザフォード(Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, 1871年8月30日 - 1937年10月19日)は、ニュージーランド出身、イギリスで活躍した物理学者、化学者。 マイケル・ファラデーと並び称される実験物理学の大家である。α線とβ線の発見、ラザフォード散乱による原子核の発見、原子核の人工変換などの業績により「原子物理学の父」と呼ばれる。 1908年にノーベル化学賞を受賞。ラザフォード指導の下、チャドウィックが中性子を発見、コッククロフトとウォルトンが加速器を使った元素変換の研究、エドワード・アップルトンが電離層の研究でノーベル賞を受賞している。後にラザホージウムと元素名にも彼は名を残している。.

アーネスト・ラザフォードと原子 · アーネスト・ラザフォードと長岡半太郎 · 続きを見る »

ジョゼフ・ジョン・トムソン

ー・ジョゼフ・ジョン・トムソン(Sir Joseph John Thomson, 1856年12月18日-1940年8月30日)は、イギリスの物理学者。しばしばJ.

ジョゼフ・ジョン・トムソンと原子 · ジョゼフ・ジョン・トムソンと長岡半太郎 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

原子と粒子 · 粒子と長岡半太郎 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

原子と量子力学 · 量子力学と長岡半太郎 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

原子と量子論 · 量子論と長岡半太郎 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

原子と電子 · 長岡半太郎と電子 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

原子と電磁波 · 長岡半太郎と電磁波 · 続きを見る »

1904年

記載なし。

1904年と原子 · 1904年と長岡半太郎 · 続きを見る »

1911年

記載なし。

1911年と原子 · 1911年と長岡半太郎 · 続きを見る »

1913年

記載なし。

1913年と原子 · 1913年と長岡半太郎 · 続きを見る »

上記のリストは以下の質問に答えます

原子と長岡半太郎の間の比較

長岡半太郎が167を有している原子は、121の関係を有しています。 彼らは一般的な21で持っているように、ジャカード指数は7.29%です = 21 / (121 + 167)。

参考文献

この記事では、原子と長岡半太郎との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »