ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

八元数

索引 八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

45 関係: 培風館基底 (線型代数学)十六元数単純リー群単連結空間合成代数多元体多元数実数対合対称群山田修司交代代数交代行列交換子交換法則弦理論ノルムノルム多元体リー群分解型八元数分配法則アーサー・ケイリーウィリアム・ローワン・ハミルトンクロス積ケーリー=ディクソンの構成法コンパクト群ジョン・ホートン・コンウェイタプル八元数環四元数積表線型写像線型結合群 (数学)結合法則違いを除いて複素数記憶術黒板太字部分多元環自己同型零因子逆元数学

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 八元数と培風館 · 続きを見る »

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: 八元数と基底 (線型代数学) · 続きを見る »

十六元数

抽象代数学における十六元数(じゅうろくげんすう、sedenion)は、全体として実数体 上次元の(双線型な乗法を持つベクトル空間という意味での)非結合的分配多元環を成す代数的な対象で、その全体はしばしば で表される。八元数にケーリー=ディクソンの構成法を使って得られる対合的二次代数である。 「十六元数」という用語は、他の十六次元代数構造、例えば四元数の複製二つのテンソル積や実数体上の四次正方行列環などに対しても用いられ、 で調べられている。.

新しい!!: 八元数と十六元数 · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: 八元数と単純リー群 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: 八元数と単連結空間 · 続きを見る »

合成代数

数学における体 上の合成代数(ごうせいだいすう、composition algebra)は、 上の(必ずしも結合的でない)単位的多元環 で、条件 N(xy).

新しい!!: 八元数と合成代数 · 続きを見る »

多元体

数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。.

新しい!!: 八元数と多元体 · 続きを見る »

多元数

数学における多元数(たげんすう、hyper­complex number; 超複素数)は、実数体上の単位的多元環の元を表す歴史的な用語である。多元数の研究は19世紀後半に現代的な群の表現論の基盤となった。.

新しい!!: 八元数と多元数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 八元数と実数 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 八元数と対合 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 八元数と対称群 · 続きを見る »

山田修司

山田 修司(やまだ しゅうじ、1956年6月2日日本工業新聞 1998.07.29「監督さん登場“喜努愛楽”:富士写真フイルム バレーボール部監督・山田修司さん」 - )は北海道札幌市出身のバレーボール選手・監督。元全日本。.

新しい!!: 八元数と山田修司 · 続きを見る »

交代代数

非可換環論における交代環(こうたいかん、alternative ring)あるいは交代多元環(こうたいたげんかん、alternative algebra; 交代代数)は、必ずしも結合的でない乗法を持つ体上の多元環(分配多元環)であって、特に任意の元 に対し.

新しい!!: 八元数と交代代数 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

新しい!!: 八元数と交代行列 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: 八元数と交換子 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 八元数と交換法則 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: 八元数と弦理論 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 八元数とノルム · 続きを見る »

ノルム多元体

数学におけるノルム多元体(のるむたげんたい、normed division algebra; ノルム付き可除代数)は、乗法的なノルムを持つ多元体を言う。即ち、実または複素数体上のノルム多元体 A は、多元体であって、かつ任意の x, y ∈ A に対して を満たすノルム ǁ•ǁ Porteous (1969) p.277に関してノルム線型空間の構造も持つ。 定義からは無限次元のノルム多元環と言うものも考えることができるが、実はこれは起こらない。実数体上のノルム多元体は同型の違いを除いて.

新しい!!: 八元数とノルム多元体 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 八元数とリー群 · 続きを見る »

分解型八元数

数学における分解型八元数(ぶんかいがたはちげんすう、split-octonion)の全体は、実八次元の分配多元環を成す。通常の八元数とは異なり、非可逆な非零元を含む。またその計量二次形式((二次の)ノルム)の符号数も異なり、通常の八元数のが正定値符号数 を持つのに対して、分解型八元数のは分解型符号数 を持つ。 八元数全体と分解型八元数全体の二者が、同型を除いて可能な実数体 上の一般八元数環の全てを尽くす。任意の体 上でも対応する分解型の八元数環を考えることができる。.

新しい!!: 八元数と分解型八元数 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 八元数と分配法則 · 続きを見る »

アーサー・ケイリー

アーサー・ケイリー(、、1821年8月16日 - 1895年1月26日)は、イギリスの数学者、弁護士。行列に関するケイリー・ハミルトンの定理で有名。.

新しい!!: 八元数とアーサー・ケイリー · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: 八元数とウィリアム・ローワン・ハミルトン · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: 八元数とクロス積 · 続きを見る »

ケーリー=ディクソンの構成法

数学におけるケーリー=ディクソンの構成法(ケーリー・ディクソンのこうせいほう)は、アーサー・ケイリーとレオナード・E・ディクソンにちなんで名づけられた、実数全体の成す体上の多元環の系列を与える方法で、各段階の多元環は直前のものの二倍の次元を持つ。この方法で与えられる各段階の多元環はケーリー=ディクソン代数として知られる。これらは複素数を拡張するから、超複素数系となっている。 これらの代数はすべて対合(または共役)を持ち、ある元とその共役元との積(場合によってはその平方根)はノルムと呼ばれる。 最初の数段階では、次の代数へ進むごとに、特徴的な代数的性質をひとつひとつ失っていく。 より一般的には、ケーリー=ディクソンの構成法とは、任意の対合つき代数系をとって倍の次元の対合つき代数系にすることである。.

新しい!!: 八元数とケーリー=ディクソンの構成法 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: 八元数とコンパクト群 · 続きを見る »

ジョン・ホートン・コンウェイ

ョン・ホートン・コンウェイ ジョン・ホートン・コンウェイ(John Horton Conway, 1937年12月26日 - )はイギリスの数学者。現プリンストン大学教授。.

新しい!!: 八元数とジョン・ホートン・コンウェイ · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 八元数とタプル · 続きを見る »

八元数環

数学における体 F 上の八元数代数または八元数環(はちげんすうかん、octonion algebra)とは、F 上 8-次元の合成代数、すなわち F 上 8-次元の単位的非結合多元環でノルム(ノルム形式)と呼ばれる非退化二次形式 N を備えたものをいう。ノルム N は、条件 を A の各元 x, y について満たす。 最もよく知られた八元数環は、実数体 R 上の八元数環である古典的なケーリーの八元数全体の成す多元体 O である。分解型八元数の全体もやはり R 上の八元数環を成す。 '''R'''-代数の同型の違いを除いて R 上の八元数環はこの二つのみである。 分解型八元数環はその二次形式 N が等方的である(つまり、N(x).

新しい!!: 八元数と八元数環 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 八元数と四元数 · 続きを見る »

積表

群の任意の構成要素A, B の積AB を並べた表を積表または乗積表という。.

新しい!!: 八元数と積表 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 八元数と線型写像 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 八元数と線型結合 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 八元数と群 (数学) · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 八元数と結合法則 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 八元数と違いを除いて · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 八元数と複素数 · 続きを見る »

記憶術

記憶術(きおくじゅつ)とは、大量の情報を急速に長期に記憶するための技術。.

新しい!!: 八元数と記憶術 · 続きを見る »

黒板太字

黒板太字(こくばんふとじ、Blackboard bold; 黒板ボールド、ブラックボードボールド)あるいは中抜き文字は、しばしば数学の書籍におけるある種の記号に対して用いられる、記号の一部の線(主に垂直線あるいはそれに近い線)を二重打ちにする書体のスタイルである。この記号は数の成す集合によく用いられる。黒板太字体の文字は、重ね打ち体 (double struck) として言及されることもある(実際にはタイプライターで重ね打ちをしてもこの字体になるわけではないけれども)。 は1993年の第14版では "lackboard bold should be confined to the classroom(黒板太字は教室内に限るべきである)" (13.14) と忠告しているが、2003年の第15版では、"pen-faced (blackboard) symbols are reserved for familiar systems of numbers(よく知られた数の体系のために黒板太字の記号が用意されている)" (14.12) と記述している。 書籍によってはこれらの文字を単なるボールド体で示しているものもある。もとを正せば黒板太字体は、黒板に太字を書く際に太くない文字との違いをはっきりさせるための方法として用いられたのだが、そこから離れて印刷でも普通の太字と異なる一つのスタイルとして用いられたのは、恐らく複素解析の教科書の が最初である。だから数学者の中には黒板太字と通常の太字を区別しない者もある。例えばセールは、黒板以外で「黒板太字」を用いることに対して公に強く非難していて、自身は黒板で太字を書くときに重ね打ち字体を用いるけれども、それと同じ記号に対して自身の出版物においては一貫して通常の太字を用いている。クヌースも出版物における黒板太字の使用について苦言を呈している。 黒板太字記法はブルバキが導入したものだという誤った主張がされることがあるが、それに反して秘密結社ブルバキの個々のメンバーは黒板において重ね打ち書体が普及してからも、彼らの著書において通常の太字体を用いている。 黒板太字で書かれる記号は、普通の文字で組版されたものが多くの異なる意味を以って用いられるのと異なり、それらの持つ意味の解釈はほぼ普遍的なものである。 数学書で標準的な組版システムであるTeXは黒板太字体を直接サポートしているわけではないが、アメリカ数学会 (AMS) によるアドオンの AMS フォントパッケージ (amsfonts) がそれを担っており、例えば黒板太字体の R は \mathbb と打てば出る。 ユニコードでは、比較的よく用いられるごく僅かの黒板太字体の文字 (C, H, N, P, Q, R, Z) が基本多言語面 (BMP) の文字様記号 (2100–214F) に、DOUBLE-STRUCK CAPITAL C などとして収録されている。しかし残りは BMP の外の U+1D538 から U+1D550 まで(BMP 収録分以外のアルファベット大文字)と、U+1D552 から U+1D56B まで(アルファベット小文字)および U+1D7D8 から U+1D7E1 まで(数字)に収録されている。BMP の外にあるということは、これらは比較的新しく、広くサポートされているわけではないということである。.

新しい!!: 八元数と黒板太字 · 続きを見る »

部分多元環

数学における体上の多元環(あるいは環上の多元環)の部分多元環(ぶぶんたげんかん、subalgebra)または部分代数とは、その線型部分空間であってかつ乗法について閉じている部分集合を言う。すなわち、演算をその上に制限すれば、それ自身が同じ体(あるいは環)上の多元環を成す。この概念は結合多元環やリー代数のように乗法がさらにいくつかの性質を満たすような特別の多元環に対してもそれぞれ特殊化して考えることができる。単に環と見做したとき乗法単位元をもつ単位的多元環に対しては、単位的部分多元環という、もとの多元環と乗法単位元を共有することを仮定するさらに強い概念も考えることができる。.

新しい!!: 八元数と部分多元環 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 八元数と自己同型 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 八元数と零因子 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 八元数と逆元 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 八元数と数学 · 続きを見る »

ここにリダイレクトされます:

8元数オクトニオンケーリー数ケイリー数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »