ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

光子

索引 光子

|mean_lifetime.

107 関係: 基準系基本相互作用原子原子核偏光反粒子場の量子論対生成対消滅屈折不変質量干渉 (物理学)位置ノーベル物理学賞マックス・プランクマクスウェルの方程式ハインリヒ・ヘルツバリオン数ポール・ヴィラールルネ・デカルトレンズレーザーレプトン数ロバート・ミリカンロバート・フックヴィルヘルム・ヴィーンヴェルナー・ハイゼンベルクボーアの原子模型ボース粒子ボース=アインシュタイン凝縮トマス・ヤングヘリシティー (素粒子)ヘンリク・アンソニー・クラマースプランクの法則プランク定数パリティヒッグス機構ディラック定数フレーバー (素粒子)ニールス・ボーア分子分光法周波数アナーレン・デア・フィジークアルベルト・アインシュタインアーネスト・ラザフォードアーサー・コンプトンアイザック・ニュートンアイザック・アシモフアイソスピン...エネルギーエネルギー準位オーギュスタン・ジャン・フレネルガンマ線ギルバート・ルイスクリスティアーン・ホイヘンスクーロンの法則ゲージ理論ゲージ粒子コンプトン効果コヒーレンス (曖昧さ回避)ジョン・クラーク・スレイタージェームズ・クラーク・マクスウェルスピン角運動量光子光学光化学光通信光速回折粒子と波動の二重性素粒子素粒子物理学真空運動量運動量保存の法則行列力学複屈折角周波数質量超伝導黒体放射赤外線重力子重力波重心量子量子力学量子コンピュータ量子電磁力学量子暗号量子数蛍光共鳴エネルギー移動電子光子相互作用電磁相互作用電磁波電荷標準模型波動関数波数波数ベクトル有効質量放射圧放射光時空2光子励起顕微鏡 インデックスを展開 (57 もっと) »

基準系

基準系(きじゅんけい)、基準座標系(きじゅんざひょうけい)、または参照系(さんしょうけい、frame of reference, reference frame )は、物理学において、系の内部の対象の位置、方位、およびその他の性質の測定を行う基準となる座標系または座標軸の集合、またはの運動の状態に結びつけられた観測基準系 を言う。.

新しい!!: 光子と基準系 · 続きを見る »

基本相互作用

基本相互作用(きほんそうごさよう、Fundamental interaction)は、物理学で素粒子の間に相互にはたらく基本的な相互作用。 素粒子の相互作用、自然界の四つの力、相互作用とも。.

新しい!!: 光子と基本相互作用 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 光子と原子 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: 光子と原子核 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 光子と偏光 · 続きを見る »

反粒子

反粒子(はんりゅうし)とは、ある素粒子(または複合粒子)と比較して、質量とスピンが等しく、電荷など正負の属性が逆の粒子を言う。特に陽電子や反陽子などの反レプトンや反バリオンをさす場合もある。 反粒子が通常の粒子と衝突すると対消滅を起こし、すべての質量がエネルギーに変換される。逆に、粒子反粒子対の質量よりも大きなエネルギーを何らかの方法(粒子同士の衝突や光子などの相互作用)によって与えると、ある確率で粒子反粒子対を生成することができ、これを対生成と呼ぶ。.

新しい!!: 光子と反粒子 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: 光子と場の量子論 · 続きを見る »

対生成

対生成(ついせいせい、Pair production)とは、光と物質との相互作用に関する量子力学用語で、エネルギーから物質(粒子と反粒子)が生成する自然現象を指す。逆反応は対消滅。 1930年、ポール・ディラックが2年前に発表したディラック方程式の解として予言し、1932年、カール・デイヴィッド・アンダーソンの電子対生成発見により立証された。その後加速器実験により、各中間子やミュー粒子、陽子についても観測されている。.

新しい!!: 光子と対生成 · 続きを見る »

対消滅

対消滅(ついしょうめつ、)は、粒子と反粒子が衝突し、エネルギーが他の粒子に変換される現象である。対生成の逆。 例えば電子と陽電子(電子の反粒子。電子と同じ質量でプラスの電荷をもつ)の衝突では、電子と陽電子はそれぞれの静止エネルギー(それぞれ511keV)とそれらのもつ運動エネルギーの和に等しいエネルギーをもつ光子に変換され、γ線として観測される。具体例としては非常に精度の高い約511keVのエネルギーをもつγ線源として知られるナトリウムの放射性同位体22Naがある。原子核がβ+崩壊によって放出する陽電子と原子核の周囲に存在する電子が対消滅し光子に変換される。対消滅では運動量が保存されるため、大きな運動エネルギーをもたない電子と陽電子の対消滅により変換された二つの光子は均等に分配された静止エネルギーを持つことになる。.

新しい!!: 光子と対消滅 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: 光子と屈折 · 続きを見る »

不変質量

不変質量 (invariant mass) は、ローレンツ変換によって関連付けられた全ての基準系で不変になるような、系の固有の質量である。不変質量は、系が全体として静止しているときの、系の全エネルギーを光速の二乗で割った値と等しい。 静止質量 (rest mass)、固有質量 (proper mass)、内在質量 (intrinsic mass)、または単に質量 (mass) とも言う。.

新しい!!: 光子と不変質量 · 続きを見る »

干渉 (物理学)

2波干渉 物理学における波の干渉(かんしょう、interference)とは、複数の波の重ね合わせによって新しい波形ができることである。互いにコヒーレントな(相関性が高い)波のとき干渉が顕著に現れる。このような波は、同じ波源から出た波や、同じもしくは近い周波数を持つ波である。.

新しい!!: 光子と干渉 (物理学) · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 光子と位置 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: 光子とノーベル物理学賞 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: 光子とマックス・プランク · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 光子とマクスウェルの方程式 · 続きを見る »

ハインリヒ・ヘルツ

ハインリヒ・ルドルフ・ヘルツ(Heinrich Rudolf Hertz, 1857年2月22日 - 1894年1月1日)は、ドイツの物理学者。マックスウェルの電磁気理論をさらに明確化し発展させた。1888年に電磁波の放射の存在を、それを生成・検出する機械の構築によって初めて実証した。.

新しい!!: 光子とハインリヒ・ヘルツ · 続きを見る »

バリオン数

バリオン数(バリオンすう)NBは、粒子の性質を表す量子数の一つである。.

新しい!!: 光子とバリオン数 · 続きを見る »

ポール・ヴィラール

ポール・ヴィラール ポール・ヴィラール(Paul Ulrich Villard,1860年9月28日 -1934年1月13日)はフランスの化学者、物理学者である。1900年にウランから放出される放射線の中のガンマ線を発見した。 物理化学の分野の研究者であった。ガンマ線を発見した時はパリの高等師範学校の化学部門で働いていた。1896年のアンリ・ベクレルのウランからの放射線の発見は当時の物理学の最先端の研究分野となり、ベクレルやラザフォードやキュリー夫妻らによって、放射線の正体が何であるかの研究がすすめられていた。放射線に正電荷をもつアルファ線と、負電荷をもつベータ線があって、それらの粒子線の質量と電荷の比などが研究されていた。ヴィラールは放射線の飛跡の写真から、電荷を持たず、透過力の高い3番目の種類の放射線の存在を発見し、1900年に発表した。当時はアルファ線、ベータ線の正体が物理学者たちのもっとも興味のある対象であったため、ヴィラールの発見は注目されなかった。ヴィラール自身もガンマ線の研究を続けなかった。なお、この放射線がガンマ線と名づけられるのは1903年、ラザフォードによってである。.

新しい!!: 光子とポール・ヴィラール · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 光子とルネ・デカルト · 続きを見る »

レンズ

レンズ レンズの断面形状の種類 レンズ()とは、.

新しい!!: 光子とレンズ · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: 光子とレーザー · 続きを見る »

レプトン数

レプトン数 (lepton number) は、粒子の性質を表す量子数の一つである。.

新しい!!: 光子とレプトン数 · 続きを見る »

ロバート・ミリカン

バート・アンドリューズ・ミリカン(Robert Andrews Millikan, 1868年3月22日 - 1953年12月19日)はアメリカ合衆国の物理学者である。1923年、電気素量の計測と光電効果の研究によりノーベル物理学賞を受賞した。アメリカ合衆国において大衆的な人気を得た物理学者、当時のアメリカの物理学界での権威となった実験物理学者である。 カリフォルニア工科大学の創立に加わり、同校が合衆国において有数の名門校となる基礎を築いた。.

新しい!!: 光子とロバート・ミリカン · 続きを見る »

ロバート・フック

バート・フック(Robert Hooke、1635年7月28日 - 1703年3月3日)は、イギリスの自然哲学者、建築家、博物学者。王立協会フェロー。実験と理論の両面を通じて科学革命で重要な役割を演じた。.

新しい!!: 光子とロバート・フック · 続きを見る »

ヴィルヘルム・ヴィーン

ヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン(独: Wilhelm Carl Werner Otto Fritz Franz Wien、1864年1月13日 - 1928年8月30日)は、ドイツの物理学者。英語風にウィルヘルム・ウィーンと表記されることもある。熱力学、特に黒体放射に関する研究で知られる。ヴィーンが発見したヴィーンの変位則やヴィーンの放射法則はマックス・プランクの量子論に直接結びつくもので、後にマックス・フォン・ラウエをして「ヴィーンの不滅の栄光は我々を量子力学の玄関口に導いた」と言わしめた。 1911年、「熱放射の諸法則に関する発見」によりノーベル物理学賞を受賞した。.

新しい!!: 光子とヴィルヘルム・ヴィーン · 続きを見る »

ヴェルナー・ハイゼンベルク

ヴェルナー・カール・ハイゼンベルク(Werner Karl Heisenberg, 1901年12月5日 - 1976年2月1日)は、ドイツの理論物理学者。行列力学と不確定性原理によって量子力学に絶大な貢献をした。.

新しい!!: 光子とヴェルナー・ハイゼンベルク · 続きを見る »

ボーアの原子模型

ボーアの原子模型(ボーアのげんしもけい、Bohr's model)とは、ラザフォードの原子模型長岡半太郎の原子模型を発展させたものであるといわれる。のもつ物理学的矛盾を解消するために考案された原子模型である。この模型は、水素原子に関する実験結果を見事に説明し、量子力学の先駆け(前期量子論)となった。.

新しい!!: 光子とボーアの原子模型 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: 光子とボース粒子 · 続きを見る »

ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

新しい!!: 光子とボース=アインシュタイン凝縮 · 続きを見る »

トマス・ヤング

トマス・ヤング(Thomas Young, 1773年6月13日 - 1829年5月10日)は、イギリスの物理学者。 14歳の頃から語学に才能をみせた。 1792年にロンドンで医学の勉強をし、1794年にエディンバラからゲッティンゲンへ移って、1796年に医学の学位を得た。1800年にロンドンで医師を開業する。 1794年、王立協会のフェローに選出される。1801年に王立研究所の自然学の教授になり、医学の面では乱視や色の知覚などの研究をした(ヤング=ヘルムホルツの三色説)。また視覚の研究から光学の研究にむかい、光の干渉現象を再発見して(ヤングの実験)光の波動説を主張した。 弾性体力学の基本定数ヤング率に名前を残している。ほかにエネルギー (energy) という用語を最初に用い、その概念を導入した。 音楽では、鍵盤楽器の調律法のひとつであるヤング音律(ヴァロッティ=ヤング音律とも呼ばれる)を1799年に考案し、翌年発表した。これはウェル・テンペラメントの中でも調性の性格がよく表れ、かつ不協和音が最も少ない調律法であり、理想的な音律として評価する専門家もいる。現在でもヴィオラ・ダ・ガンバのフレッティングが容易なためヴァロッティ音律とならんでバロック・アンサンブルで多用されている。 またロゼッタ・ストーンなどのエジプトのヒエログリフの解読を試みたことでも知られる。.

新しい!!: 光子とトマス・ヤング · 続きを見る »

ヘリシティー (素粒子)

ヘリシティー (helicity) は、粒子のスピンの回転方向を表す数値である。その値が-のものを左巻き、+のものを右巻きと呼ぶ。 数学的には、スピン\vec Sの運動量の向き \hat p への射影として、次のように表される: ある軸に関するスピンの固有値は離散的な値なので、ヘリシティーの固有値は離散的である。スピンSの粒子について、ヘリシティーの固有値はS,,..., −Sである。スピンSの粒子で計測されるヘリシティーは−Sから+Sの範囲を取りうる。ヘリシティーは、 \vec S の代わりに全角運動量演算子 \vec J によって等価に書き表すことができる。これは、線運動量に沿った軌道角運動量の射影は次のように0になるためである: 3 + 1次元において、質量を持たない粒子についての小群はSE(2)の二重被覆である。これは、SE(2)の"並進"に対して不変でありSE(2)のθ回転に対してeihθ変換を行うユニタリ表現を持つ。これはヘリシティーh表現である。SE(2)の並進に対して非自明に変換を行う別のユニタリ表現もある。これは、連続スピン表現である。 次元において、小群はSE() の二重被覆である。(の場合はエニオンなどのためにさらに複雑である。)前述のように、"標準"表現(SE()の"並進")および"連続スピン"表現に対して変換を行わない(不変である)ユニタリ表現が存在する。 質量を持たない2粒子にとって、ヘリシティーは\hbar/2倍されたカイラル演算子と等価である。.

新しい!!: 光子とヘリシティー (素粒子) · 続きを見る »

ヘンリク・アンソニー・クラマース

ヘンリク・アンソニー・クラマース(Hendrik Anthony Kramers, 1894年2月2日 - 1952年4月24日)は、オランダの物理学者である。.

新しい!!: 光子とヘンリク・アンソニー・クラマース · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

新しい!!: 光子とプランクの法則 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 光子とプランク定数 · 続きを見る »

パリティ

パリティ (parity) とは等価性の観念または等価性を維持する機能のこと。いくつかの異なった定義がある。.

新しい!!: 光子とパリティ · 続きを見る »

ヒッグス機構

ヒッグス機構(ヒッグスきこう、Higgs mechanism)とは、ピーター・ヒッグスが1964年に提唱した、ゲージ対称性の自発的破れと質量の生成に関する理論である。 ゲージ理論において、ゲージ場は質量項を持つことができないが、この理論では、ヒッグス場が真空期待値を持つことで系の対称性を破り、ゲージ粒子はヒッグス場との相互作用を通して質量を獲得するものと考える。 ただし、この理論によれば真空と同じ量子数を持つスカラー粒子が現れるとされるので、この理論が現実の物理に適用できるものだと証明するためには、その粒子(ヒッグス粒子)を実験的に見つけることが課題になる『改訂 物理学事典』 p.1710 「ヒグス機構」。 この機構(メカニズム)は、まず1962年にフィリップ・アンダーソンによって提唱され、類似のモデルが1964年に3つの独立したグループによって発展させられた。すなわち (1) ロベール・ブルー:en:Robert Broutとフランソワ・アングレール 、(2) ピーター・ヒッグス、および(3):en:Gerald GuralnikとC. R. HagenとTom Kibbleの3グループである。よって、このメカニズムは次のような様々な呼称で呼ばれている。Brout–Englert–Higgs mechanism(ブルー・エングレール・ヒッグス・メカニズム)、あるいはEnglert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, Anderson–Higgs mechanism, Higgs–Kibble mechanism(アブドゥッサラームによる)あるいはできるだけ頭文字だけにしてABEGHHK'tH mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooftの頭文字。ピーター・ヒッグスが他の研究者たちに敬意を払ってこう呼んだ。)。.

新しい!!: 光子とヒッグス機構 · 続きを見る »

ディラック定数

換算プランク定数(かんさんプランクていすう、reduced Planck constant)またはまれにディラック定数(ディラックていすう、Dirac's constant) は、プランク定数 を で割った値を持つ定数である。その値は である(2014CODATA推奨値)。 は「エイチ・バー」と読む。.

新しい!!: 光子とディラック定数 · 続きを見る »

フレーバー (素粒子)

素粒子物理学において、フレーバー (flavour, flavor) とはクォークとレプトンの種類を意味する。また、これらの素粒子の種類を分類する量子数としても定義される。.

新しい!!: 光子とフレーバー (素粒子) · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

新しい!!: 光子とニールス・ボーア · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 光子と分子 · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 光子と分光法 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 光子と周波数 · 続きを見る »

アナーレン・デア・フィジーク

アナーレン・デア・フィジーク (Annalen der Physik) は世界で最も古い物理学の学術雑誌の一つ(1799年創刊)。物理学に関する幅広い分野の査読済み原著論文を掲載している。 この雑誌は1790年から1794年まで発行されたJournal der Physikと、1795年から1797年まで発行されたNeues Journal der Physikの後継雑誌であるhttp://www.physik.uni-augsburg.de/annalen/history/history.html 。創刊以後、何度か名前を変えて出版されてきた。.

新しい!!: 光子とアナーレン・デア・フィジーク · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 光子とアルベルト・アインシュタイン · 続きを見る »

アーネスト・ラザフォード

初代ネルソンのラザフォード男爵アーネスト・ラザフォード(Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, 1871年8月30日 - 1937年10月19日)は、ニュージーランド出身、イギリスで活躍した物理学者、化学者。 マイケル・ファラデーと並び称される実験物理学の大家である。α線とβ線の発見、ラザフォード散乱による原子核の発見、原子核の人工変換などの業績により「原子物理学の父」と呼ばれる。 1908年にノーベル化学賞を受賞。ラザフォード指導の下、チャドウィックが中性子を発見、コッククロフトとウォルトンが加速器を使った元素変換の研究、エドワード・アップルトンが電離層の研究でノーベル賞を受賞している。後にラザホージウムと元素名にも彼は名を残している。.

新しい!!: 光子とアーネスト・ラザフォード · 続きを見る »

アーサー・コンプトン

アーサー・コンプトン(Arthur Holly Compton,1892年9月10日 - 1962年3月15日)は、アメリカの実験物理学者。1920年からセントルイス・ワシントン大学、1923年からはシカゴ大学で教職に就いた。兄のカール・テイラー・コンプトンも物理学者。 コンプトンは自由電子によって散乱されたX線の波長が長くなっていることを実験によって発見した(コンプトン効果)。これはX線の持つエネルギーが、散乱される前に比べて減少したことを意味している。つまり電磁波が持っていたエネルギーの一部が自由電子に移ったと解釈できる。コンプトン効果は光の粒子性を証明する実験の一つとされた。 第二次世界大戦期は、原子爆弾の開発のために尽力した。1946年にはセントルイスのワシントン大学の総長に就任した。.

新しい!!: 光子とアーサー・コンプトン · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 光子とアイザック・ニュートン · 続きを見る »

アイザック・アシモフ

アイザック・アシモフ(Isaac Asimov、1920年1月2日 – 1992年4月6日)は、アメリカの作家、生化学者(ボストン大学教授)である。その著作は500冊以上を数える。彼が扱うテーマは科学、言語、歴史、聖書など多岐にわたり、デューイ十進分類法の10ある主要カテゴリのうち9つにわたるが唯一の例外は1類「哲学および心理学」である。ただし、1類に分類される The Humanist Way の序文を執筆している。、特にSF、一般向け科学解説書、推理小説によってよく知られている。 日本語では「アシモフ」と「アジモフ」などの片仮名表記があり、前者での表記が一般的であるが、本人が望んでいた読みは後者の発音に比較的近いであるAsimov の発音については自伝に has-him-of のエピソードが掲載されている。『アシモフ自伝I』 上巻31頁には、has, him, of の3つの簡単な英単語から2つの h を抜くと Asimov の発音になるという記述がある。さらに同書30頁には Asimov の s は発音としては z である旨の記述もある。これらより、本人が考えている発音をカタカナで表記すると アジモヴ の方がより近いと考えられる。しかし日本語において著者名としてアジモヴあるいはアジモブという表記をとっている書籍は国立国会図書館にはない。アシモフ自身が日本語仮名表記で「アジモフ」の表記を要求した事実はなく、日本ではアシモフの著作が紹介された当初から「アシモフ」の表記が定着している。。 ジュブナイル作品ではポール・フレンチという筆名を用いた。1942年発表のSF短編 Time Pussy では George E. Dale という筆名を用いた。1971年の著書 The Sensuous Dirty Old Man では Dr.

新しい!!: 光子とアイザック・アシモフ · 続きを見る »

アイソスピン

アイソスピン (isospin) は、ハドロンの持つ量子数の一つである。 クォークモデルの確立により、アイソスピンもクォークへと拡張されている。.

新しい!!: 光子とアイソスピン · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 光子とエネルギー · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

新しい!!: 光子とエネルギー準位 · 続きを見る »

オーギュスタン・ジャン・フレネル

ーギュスタン・ジャン・フレネル オーギュスタン・ジャン・フレネル(Augustin Jean Fresnel、1788年5月10日 - 1827年7月14日)は、フランスの物理学者、土木技術者。トマス・ヤングとは独立に光の波動説を唱え、光の回折や複屈折現象など、光学に関する理論的研究を行った。また、フレネルレンズを発明するなど、実用的な研究にも業績をのこした。 フレネルは、1788年にノルマンディーので誕生した。父は建築家であった。子供時代は8歳になっても読み書きが出来なかった。16歳でエコール・ポリテクニークに入学。そこで卓越した才能を示した。2年後、国立土木学校(Ecole Nationale des Ponts et Chaussees)に入学。卒業後、ヴァンデ県、ドローム県、イル=エ=ヴィレーヌ県の技師を歴任し、道路建設などに携わった。彼は仕事の合間に光学に関する実験などを行った。 1815年、失脚していたナポレオン・ボナパルトがエルバ島を脱出して、フランス本土に上陸した。フレネルは国王ルイ18世のために戦おうとしたが、このために技師としての職を失い、警察によって軟禁状態におかれてしまった。 失職したことによりフレネルは自由な時間を得、光学の実験に没頭することができた。この時期に、光の波動性によって回折現象が説明できることを示した(「フレネル回折」を参照)。ナポレオンの百日天下が終わり、ルイ18世が再び即位すると、彼も復職しパリにて技師としての仕事を再開した。 その後も、仕事の傍ら光学の研究を行った。クリスティアーン・ホイヘンスやトマス・ヤングらによる、従来の「光の波動説」では光は音波と同様、縦波であると考えられていた。フレネルは、偏光の振る舞いから、光の波動説を実証し、かつその振動方向は進行方向に対して垂直な横波であるという結論を得た。この結果は1818年に論文として発表された。フレネルの光学理論は、複屈折現象などを上手く説明できることが明らかになり、広く受け入れられる様になった。また同年、地球のような運動する物体の光行差についての研究を行った。この研究はマイケルソン・モーリーの実験の基礎を与えるものであり、さらには特殊相対性理論につながるものであった。 その後、フランソワ・アラゴと共に光学理論をまとめあげ、1823年、「反射が偏光に与える諸変形の法則に関する論文」として発表した。この功績により同年、フランス科学アカデミーの会員に選ばれた。さらに1824年にはロンドン王立協会からランフォード・メダルを受賞し、翌年に王立協会の外国人会員に選ばれた。 フレネルは実用的な研究にも業績をのこした。灯台を開発する際、それまでは1枚の巨大なレンズが作られていたが、薄い複数枚のレンズを組み合わせて同様の性能のレンズを開発した。このレンズは現在でもフレネルレンズと呼ばれている。 フレネルは病弱であり、絶えず病気に悩まされ続けた。1827年、結核により39歳で死亡。.

新しい!!: 光子とオーギュスタン・ジャン・フレネル · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: 光子とガンマ線 · 続きを見る »

ギルバート・ルイス

ルバート・ニュートン・ルイス(Gilbert Newton Lewis, 1875年10月23日 - 1946年3月24日)は、アメリカ合衆国の物理化学者。共有結合の発見(ルイスの電子式)、重水の単離、化学熱力学を数学的に厳密で普通の化学者にも馴染める形で再構築、酸と塩基の定義、光化学実験などで知られている。1926年、放射エネルギーの最小単位を "photon"(光子)と名付けた。化学の専門家のフラタニティ Alpha Chi Sigma のメンバーだった。長く教授を務めたが、中でもカリフォルニア大学バークレー校に最も長く在籍した。.

新しい!!: 光子とギルバート・ルイス · 続きを見る »

クリスティアーン・ホイヘンス

リスティアーン・ホイヘンス(Christiaan Huygens 、1629年『天文アマチュアのための望遠鏡光学・屈折編』pp.14-15「ハイゲンス兄弟の望遠鏡」。4月14日 - 1695年7月8日)() は、オランダの数学者、物理学者、天文学者。かつてオランダの25ギルダー紙幣にその肖像が描かれていた。.

新しい!!: 光子とクリスティアーン・ホイヘンス · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 光子とクーロンの法則 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 光子とゲージ理論 · 続きを見る »

ゲージ粒子

ージ粒子(ゲージりゅうし、gauge boson)とは、素粒子物理学において、ゲージ相互作用を媒介するボース粒子の総称である。 特にその相互作用がゲージ理論で記述されている素粒子間において、(仮想粒子として)ゲージ粒子の交換により力が生じる。 標準模型においては、電磁相互作用を媒介する光子、弱い相互作用を伝えるウィークボソン、強い相互作用を伝えるグルーオンの3種類がある。 また重力相互作用もゲージ理論で記述されていると考えられており、これを伝える重力子がある。.

新しい!!: 光子とゲージ粒子 · 続きを見る »

コンプトン効果

ンプトン効果(コンプトンこうか、Compton effect)とは、X線を物体に照射したとき、散乱X線の波長が入射X線の波長より長くなる現象である。これは電子によるX線の非弾性散乱によって起こる現象であり、X線(電磁波)が粒子性をもつこと、つまり光子として振る舞うことを示す。また、コンプトン効果の生じる散乱をコンプトン散乱(コンプトンさんらん、Compton scattering)と呼ぶ。 .

新しい!!: 光子とコンプトン効果 · 続きを見る »

コヒーレンス (曖昧さ回避)

ヒーレン.

新しい!!: 光子とコヒーレンス (曖昧さ回避) · 続きを見る »

ジョン・クラーク・スレイター

ョン・クラーク・スレイター(John Clarke Slater, 1900年12月22日 - 1976年7月25日)は、アメリカイリノイ州オークパーク生まれの理論物理学者。ロチェスター大学やハーバード大学、ケンブリッジ大学で学ぶ。ハーバード大学助教授を経て、1930年にMIT(マサチューセッツ工科大学)教授となった。 電気、電子、化学など幅広い分野に足跡を残し、マグネトロンの定理など興味深い論文も発表しているが、業績としてもっとも知られているのは、素粒子の分野における研究である。とりわけ、彼の名を冠したスレイター行列式は、よく知られている。またバンド計算法のひとつで、マフィンティン・ポテンシャルを用いるAPW法(Augumented Plane Wave Method)も、1937年の彼の業績である。 1953年には、国際理論物理学会 東京&京都で来日した。1967年アーヴィング・ラングミュア賞、1970年アメリカ国家科学賞受賞。.

新しい!!: 光子とジョン・クラーク・スレイター · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: 光子とジェームズ・クラーク・マクスウェル · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 光子とスピン角運動量 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 光子と光 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 光子と光子 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

新しい!!: 光子と光学 · 続きを見る »

光化学

光化学(こうかがく または ひかりかがく、)とは、物質の光照射下での挙動について調べる化学の一領域。広義には、光と物質との相互作用を取り扱う化学の一分野で、光励起による蛍光・蓄光のような発光現象も対象とされている。 光化学が取り扱う物質は、無機化合物から有機化合物まで多岐にわたる。光の波長が赤外線よりも長波長の場合には、光の作用は熱的な作用が主となるため、光化学には含まれないことが多いが、近年の赤外レーザーの出現により、多光子吸収による化学反応が多数報告されたため、光化学の一領域として注目を集めている(非線形光学)。逆に、光の波長が短くなって、X線やγ線のようにイオン化や電子放出のような作用を及ぼす場合には、光化学ではなく放射線化学で取り扱われている。光化学では、光の強度ではなく、光の波長が本質的な意味をもつ。.

新しい!!: 光子と光化学 · 続きを見る »

光通信

光通信(ひかりつうしん)とは伝送媒体に光ファイバーを利用した有線通信を行うことである。.

新しい!!: 光子と光通信 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 光子と光速 · 続きを見る »

回折

平面波がスリットから回折する様子を波面で表わした模式図 回折(かいせつ、英語:diffraction)とは媒質中を伝わる波(または波動)に対し障害物が存在する時、波がその障害物の背後など、つまり一見すると幾何学的には到達できない領域に回り込んで伝わっていく現象のことを言う。1665年にイタリアの数学者・物理学者であったフランチェスコ・マリア・グリマルディにより初めて報告された。障害物に対して波長が大きいほど回折角(障害物の背後に回り込む角度)は大きい。 回折は音波、水の波、電磁波(可視光やX線など)を含むあらゆる波について起こる。単色光を十分に狭いスリットに通しスクリーンに当てると回折によって光のあたる範囲が広がる。また、スリットが複数の場合や単一でも波長より広い場合、干渉によって縞模様ができる。この現象は、量子性が顕著となる粒子のビーム(例:電子線、中性子線など)でも起こる(参照:物質波)。.

新しい!!: 光子と回折 · 続きを見る »

粒子と波動の二重性

粒子と波動の二重性(りゅうしとはどうのにじゅうせい、Wave–particle duality)とは、量子論・量子力学における「量子」が、古典的な見方からすると、粒子的な性質と波動的な性質の両方を持つという性質のことである。 光のような物理現象が示す、このような性質への着目は、クリスティアーン・ホイヘンスとアイザック・ニュートンにより光の「本質」についての対立した理論(光の粒子説と光の波動説)が提出された1600年代に遡る。その後19世紀後半以降、アルベルト・アインシュタインやルイ・ド・ブロイらをはじめとする多くの研究によって、光や電子をはじめ、そういった現象を見せる全てのものは、古典的粒子のような性質も古典的波動のような性質も持つ、という「二重性」のある「量子」であると結論付けられた。この現象は、素粒子だけではなく、原子や分子といった複合粒子でも見られる。実際にはマクロサイズの粒子も波動性を持つが、干渉のような波動性に基づく現象を観測するのは、相当する波長の短さのために困難である。.

新しい!!: 光子と粒子と波動の二重性 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 光子と素粒子 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

新しい!!: 光子と素粒子物理学 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: 光子と真空 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 光子と運動量 · 続きを見る »

運動量保存の法則

運動量保存の法則(うんどうりょうほぞんのほうそく)とは、ある系に外部からの力が加わらないかぎり、その系の運動量の総和は不変であるという物理法則。運動量保存則ともいう。最初、デカルトが『哲学原理』の中で、質量と速さの積の総和を神から与えられた不変量として記述したが、ベクトルを用いて現在の形の運動量とその保存則を導いたのはホイヘンスである。 外部からの力が働かない問題の例としては、物体の衝突問題がある。二体の衝突問題は、エネルギー保存の法則と運動量保存の法則を考えることで解くことができる。完全弾性衝突のときのみ物体の運動エネルギーは保存される。.

新しい!!: 光子と運動量保存の法則 · 続きを見る »

行列力学

行列力学(ぎょうれつりきがく、)は、量子力学における理論形式の一つで、量子論をハイゼンベルク描像で行列表示で定式化したものである。マトリックス力学とも呼ばれる。1925年に物理学者ヴェルナー・ハイゼンベルクによって提唱され、マックス・ボルン、パスクアル・ヨルダンらともに展開された。.

新しい!!: 光子と行列力学 · 続きを見る »

複屈折

複屈折(ふくくっせつ、Birefringence)とは、光線がある種の物質(例えば方解石という結晶)を透過したときに、その偏光の状態によって、2つの光線に分けられることをいう。それぞれは通常光線と異常光線と呼ばれ、光学軸に対する偏光方向(電場ベクトルの向き)が異なる。この現象は,それぞれの偏光の向きに対して2つの異なる物質の屈折率を与えることで説明される。物質を透過する時の光の速さが、透過する光の電場ベクトルの向きに依存していると言い換えることもできる。 複屈折性は次のように定量化される。 ここで n_o は通常光線についての屈折率、n_e は異常光線についての屈折率である。二つの光線についての屈折率は入射光が光学軸と同軸で入射するときは一致する。通常光線についての屈折率は入射光の光学軸に対する角度には依存しない。一方で、異常光線についての屈折率は入射光の光学軸に対する角度によって変化し、入射光と光学軸のなす角が垂直の時に最大になる。 もっと一般的には、異方的な誘電体の誘電率を2階のテンソル(3×3行列)で記述する。複屈折性の物質は実対称誘電率テンソル \epsilon の特別な場合であり、3つの直交する偏極主軸についての固有値が n_o^2、n_o^2、および n_e^2 であるものに対応する(または、光の伝播方向を固定して考え、残りの2つの軸だけを考えることもある)。 複屈折は原理的には誘電体だけではなく磁性体でも生じ得るが、透磁率は光の振動数の領域ではほとんど変化しない。 セロハン紙は、安価に手に入る複屈折性物質の一例である。 水晶球が本物であるかどうか判断する場合は、複屈折を確認するとよい。天然水晶の場合、複屈折により透過した景色の輪郭が滲んで見える。透明であっても、輪郭がにじまず明瞭に見える場合は、ガラス等の複屈折性のない物質だと区別できる。.

新しい!!: 光子と複屈折 · 続きを見る »

角周波数

角周波数(かくしゅうはすう、角振動数、円振動数とも)は物理学(特に力学や電気工学)において、回転速度を表すスカラー量。角周波数は、ベクトル量である角速度の大きさにあたる(\omega.

新しい!!: 光子と角周波数 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 光子と質量 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: 光子と超伝導 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: 光子と黒体放射 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 光子と赤外線 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: 光子と重力子 · 続きを見る »

重力波

重力波(じゅうりょくは) 次の2つの現象は異なるものだが、日本語ではどちらも重力波と呼ばれる。.

新しい!!: 光子と重力波 · 続きを見る »

重心

重心(じゅうしん、center of gravity)は、力学において、空間的広がりをもって質量が分布するような系において、その質量に対して他の物体から働く万有引力(重力)の合力の作用点である。重力が一様であれば、質量中心(しつりょうちゅうしん、center of mass)と同じであるためしばしば混同されており、本来は異なるのだが、当記事でも基本的には用語を混同したまま説明する(人工衛星の安定に関してなど、これらを区別して行う必要がある議論を除いて、一般にはほぼ100%混同されているためである)。 一様重力下で、質量分布も一様である(または図形の頂点に等質量が凝集している)ときの重心は幾何学的な意味での「重心」(幾何学的中心、)と一致する。より一般の状況における重心はの項を参照せよ。.

新しい!!: 光子と重心 · 続きを見る »

量子

量子(りょうし、quantum)は、量子論・量子力学などで顕れてくる、物理量の最小単位である。古典論では物理量は実数で表される連続量だが、量子論では、「量子」と呼ばれるような性質を持った粒子である基本粒子の素粒子に由来するものとして物理量は扱われる。そのため、たとえば電気量は電気素量の整数倍の値しかとらないものとなる。量子には、波のようにもふるまうこともあれば粒子のようにふるまうこともあるという、直感では一見不思議に思われるような性質(「粒子と波動の二重性」)がある(どちらが「本質」か、その「解釈」は、といったような問いは普通は無意味である)。.

新しい!!: 光子と量子 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 光子と量子力学 · 続きを見る »

量子コンピュータ

量子コンピュータ (りょうしコンピュータ、英語:quantum computer) は、量子力学的な重ね合わせを用いて並列性を実現するとされるコンピュータ。従来のコンピュータの論理ゲートに代えて、「量子ゲート」を用いて量子計算を行う原理のものについて研究がさかんであるが、他の方式についても研究・開発は行われている。 いわゆる電子式など従来の一般的なコンピュータ(以下「古典コンピュータ」)の素子は、情報について、「0か1」などなんらかの2値をあらわすいずれかの状態しか持ち得ない「ビット」で扱う。量子コンピュータは「量子ビット」 (qubit; quantum bit、キュービット) により、重ね合わせ状態によって情報を扱う。 n量子ビットがあれば、2^nの状態を同時に計算できる。もし、数千qubitのハードウェアが実現した場合、この量子ビットを複数利用して、量子コンピュータは古典コンピュータでは実現し得ない規模の並列コンピューティングが実現する。2^以下)で数千年かかっても解けないような計算でも、例えば数十秒といった短い時間でこなすことができる、とされている。--> 量子コンピュータの能力については、計算理論上の議論と、実際に実現されつつある現実の機械についての議論がある。#計算能力の節を参照。.

新しい!!: 光子と量子コンピュータ · 続きを見る »

量子電磁力学

量子電磁力学(りょうしでんじりきがく、, QED)とは、電子を始めとする荷電粒子間の電磁相互作用を量子論的に記述する場の量子論である。量子電気力学と訳される場合もある。.

新しい!!: 光子と量子電磁力学 · 続きを見る »

量子暗号

量子暗号(りょうしあんごう、Quantum cryptography)とは、通常は量子鍵配送のことを指す。完全な秘密通信は、伝送する情報の量と同じ長さの秘密鍵を送信者と受信者が共有することで初めて可能になる(ワンタイムパッドと呼ばれる方式を用いる)。この秘密鍵の共有を量子状態の特性によって実現し、通信路上の盗聴が検出できる。計算量的安全性でなく情報理論的安全性であることと、その実装の基礎が量子力学という物理学の基本法則に基づいていることが特徴である。なお、商用に広く用いられる公開鍵暗号は解読に計算時間が膨大にかかるだけ(計算量的安全性)であり、情報理論的に安全な秘密通信ではない。量子暗号は量子情報理論の、現在のところほぼ唯一の現実的な応用である。 別の概念として、量子コンピュータを用いた公開鍵暗号方式を「量子公開鍵暗号」ということがある。例えば、OTU暗号 (岡本・田中・内山暗号) はナップサック問題といわれるNP完全問題に基づいており、鍵の生成時に離散対数問題を解くために量子コンピュータを用いる。.

新しい!!: 光子と量子暗号 · 続きを見る »

量子数

量子力学において量子数 (りょうしすう、quantum number) とは、量子状態を区別するための数のこと。 量子数はただ1組とは限らず、原理的には多数存在しうる。状態を区別できるのであれば量子数はどのように選んでも良い。しかし系の物理量がとる値自身、またはそれを区別する数を量子数として採用するしか方法は無い。例えばN粒子系では、各粒子の位置\bold_1, \cdots, \bold_Nを量子数に選んでも良いし、運動量\bold_1, \cdots, \bold_Nを選ぶこともできる。このときは量子数は全部で3N個となる。また一次元調和振動子では、位置や運動量を選ぶこともできるが、エネルギー固有値E_nの番号nを選ぶこともできる。位置や運動量を量子数として選んだ場合は量子数は連続変数となるが、エネルギー固有値の番号を選んだ場合は量子数は離散値になる。.

新しい!!: 光子と量子数 · 続きを見る »

蛍光共鳴エネルギー移動

蛍光共鳴エネルギー移動(けいこうきょうめいエネルギーいどう、Fluorescence resonance energy transfer:略称: FRET、またはフェルスター共鳴エネルギー移動)とは、近接した2個の色素分子(または発色団)の間で励起エネルギーが、電磁波にならず電子の共鳴により直接移動する現象。このため、一方の分子(供与体)で吸収された光のエネルギーによって他方の分子(受容体)にエネルギーが移動し、受容体が蛍光分子の場合は受容体から蛍光が放射される。 供与体の発光スペクトルと受容体の吸収スペクトルの重なり積分が大きいほどフェルスター距離が大きくなり、エネルギー移動が起こりやすくなる。FRETの観察手段の1つとして、供与体の吸収スペクトルに相当する光で供与体を励起し、受容体から放射される蛍光強度の増加を検出する方法がある。これ以外にも、供与体の蛍光強度や蛍光寿命の変化を測定したりする方法もある。 FRET効率は、両分子間の距離の6乗の関数として距離とともに急速に減少する。これを応用して、両分子間の距離をFRET効率から計算することができる。しかしFRET効率は、両分子の電気双極子の配向にも影響されるため、蛍光タンパク質のように蛍光寿命時間オーダーで等方的な蛍光の放射が起こらない場合には、正確な距離の計算が困難な場合もある。.

新しい!!: 光子と蛍光共鳴エネルギー移動 · 続きを見る »

電子光子相互作用

電子光子相互作用(でんしこうしそうごさよう)とは、電子と光(電磁場、光子)との間に働く相互作用である。.

新しい!!: 光子と電子光子相互作用 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: 光子と電磁相互作用 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 光子と電磁波 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 光子と電荷 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: 光子と標準模型 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: 光子と波動関数 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: 光子と波数 · 続きを見る »

波数ベクトル

物理学における波数ベクトルとは、波動を記述するのに用いられるベクトルである。 全てのベクトルのように大きさと方向を持ち、これら両方が重要である。 その大きさは波の波数または角波数であり、波長に反比例する。 その方向は通常、の方向であるが、いつもそうとは限らない(以下を参照)。 特殊相対論の文脈では、波数ベクトルは4元ベクトルとしても定義できる。.

新しい!!: 光子と波数ベクトル · 続きを見る »

有効質量

有効質量(ゆうこうしつりょう、effective mass)とは、何らかの物理現象を、「古典力学における質量を含む物理法則(比較的簡単な現象の場合が多い)」のアナロジーで現象論的に理解しようとしたときに出てくる、質量相当のパラメータの総称である。結晶中の電子の物性を用いる上で用いられる「有効質量」を指すことがほとんどだが、結晶中の電子の物性とは異なる物理現象にもこの概念を持ち込むことがある。 「結晶中の電子の有効質量」以外の「有効質量」としては、例えば、原子間力顕微鏡のカンチレバーの機械的な振動(古典力学の現象)を、よりやさしい(古典力学の)現象である、フックの法則に置き換えて考えるときに、フックの法則における質量に相当するパラメーターを有効質量と呼ぶことがあるhttp://spin100.imr.tohoku.ac.jp/oomichiNOTE.pdf。 以下、本節では、「結晶中の電子の有効質量」について説明する。.

新しい!!: 光子と有効質量 · 続きを見る »

放射圧

放射圧(ほうしゃあつ、radiation pressure)とは電磁放射を受ける物体の表面に働く圧力である。日本語では輻射圧・光圧とも呼ばれる。放射圧の大きさは、放射が物体に吸収される場合には入射するエネルギー流束密度(単位時間に単位面積を通過するエネルギー)を光速で割った値となり、放射が完全反射される場合にはその2倍の値になる。例えば、地球の位置での太陽光のエネルギー流束密度(太陽定数)は なので、その放射圧は(太陽光が吸収される場合) となる。.

新しい!!: 光子と放射圧 · 続きを見る »

放射光

放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

新しい!!: 光子と放射光 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: 光子と時空 · 続きを見る »

2光子励起顕微鏡

2(多)光子励起顕微鏡(Two-photon excitation microscopy)とは、物質励起に2光子吸収過程を利用した顕微鏡である。2光子吸収過程は、本来一つの光子しか占有し得ない空間に2つ(またはそれ以上)の光子が飛び込むことである。この2光子吸収過程は自然界では非常に稀にしか起こりえない事象であるが、光子の密度を高めることで起こる確率を高めることができる。 2光子過程では、原理的には2つの光子から元の光子の2倍のエネルギーを持った1つの光子、すなわち波長が1/2の光子が生まれる。 2光子吸収過程の光源は、高い密度の光子と、試料へのダメージを避けるために、フェムト秒超短パルスの高出力ポンプ・レーザーが用いられる。チタンサファイアレーザーは対物レンズ焦点面で集約され、2光子吸収過程が惹起される。このように焦点面のみを励起できる性質から、共焦点顕微鏡と同様に3次元の撮像が可能である。画像構築の方法論は、共焦点走査顕微鏡と同じく、ガルバノ・ミラーと光電子増倍管、光学スリットなどを用いる。ピンホールは必要ないので、蛍光のロスは少なくなる。 光源に最も良く用いられる赤外域レーザーは、長波長であるので、可視光や紫外線領域のレーザーよりも組織透過性が優れている上、焦点面でのみ目的の励起光が発生するため、組織表面から数百マイクロメートルといった深部の顕微鏡像を少ない侵襲で取得することができる。このため、たとえば生きた動物の脳内で起こっている神経細胞活動や血流などを観察可能である。一方で、励起光の発生が確率論的に支配されるので、画像解像度は共焦点に劣る。 対物レンズには、少なくともレーザーの波長から蛍光の波長までを同焦点でカバーできる高性能なものが要求される。 透過性が優れているため、マウスの頭骨を薄く削るなどすれば生きたままの脳の細胞が観察でき、2000年代後半から樹状突起の成長を長期間にわたって追跡するなどの研究が可能となった。.

新しい!!: 光子と2光子励起顕微鏡 · 続きを見る »

ここにリダイレクトされます:

光量子光量子仮説

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »