ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

代数幾何学

索引 代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

28 関係: 可換環論双曲線多項式多様体実数射影空間幾何学代数多様体代数学代数函数体マルセイユルネ・デカルトベルンハルト・リーマンアレクサンドル・グロタンディークアンドレ・ヴェイユオスカー・ザリスキグレブナー基底終結式直線複素多様体零点森重文極小モデル楕円概型浮動小数点数数学曲線

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: 代数幾何学と可換環論 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 代数幾何学と双曲線 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 代数幾何学と多項式 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 代数幾何学と多様体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 代数幾何学と実数 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 代数幾何学と射影空間 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 代数幾何学と幾何学 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 代数幾何学と代数多様体 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 代数幾何学と代数学 · 続きを見る »

代数函数体

数学では、体 上の 変数の代数函数体 (algebraic function field)(単に、函数体とも言う)は、 上に超越次数 を持つ有限生成な体の拡大 である。同じことであるが、 上の 変数の代数函数体は、 上の 変数の有理函数の体 の有限拡大として定義できる。 Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field k(x1,...,xn) of rational functions in n variables over k.-->.

新しい!!: 代数幾何学と代数函数体 · 続きを見る »

マルセイユ

マルセイユ (Marseille) は、フランス最大の港湾都市で、プロヴァンス=アルプ=コート・ダジュール地域圏 (Provence-Alpes-Côte d'Azur, PACA) の首府、ブーシュ=デュ=ローヌ県の県庁所在地である。地中海リオン湾を臨む。.

新しい!!: 代数幾何学とマルセイユ · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 代数幾何学とルネ・デカルト · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 代数幾何学とベルンハルト・リーマン · 続きを見る »

アレクサンドル・グロタンディーク

アレクサンドル・グロタンディーク(Alexander Grothendieck, 1928年3月28日 - 2014年11月13日)は主にフランスで活躍した、ドイツ出身のユダヤ系フランス人の数学者である。 日本の数学界では彼は「グロタンディク」、「グロタンディック」、「グロタンディエク」、「グロタンディエック」、「グロテンディーク」、「グローテーンディーク」などと表記されているGrothendieck という名は、オランダ起源です。オランダにはこの名と類似の名(en dyck など)はよくあるものです。それは『大きな堤防』の意味です。私は(オランダ語よみやフランス語よみでなく)ドイツ語の発音―グロテンディーク―にしたがっています。。.

新しい!!: 代数幾何学とアレクサンドル・グロタンディーク · 続きを見る »

アンドレ・ヴェイユ

アンドレ・ヴェイユ(André Weil, 1906年5月6日 - 1998年8月6日)は、フランスの数学者で、20世紀を代表する数学者の一人である。思想家のシモーヌ・ヴェイユは妹、児童文学者のは娘である。.

新しい!!: 代数幾何学とアンドレ・ヴェイユ · 続きを見る »

オスカー・ザリスキ

ー・ザリスキ(Oscar Zariski, 1899年4月24日 - 1986年7月4日 )は、ロシア帝国(現ベラルーシ)の出身でのちにアメリカ合衆国で活躍した数学者。専門は代数幾何学で、ヴェイユと並び多大な影響を及ぼした。 アメリカに移住後、ジョンズ・ホプキンス大学、ハーバード大学などで教鞭を執った。1981年ウルフ賞数学部門受賞。 主な業績は、ザリスキ位相の導入やの証明を含む可換環論と代数幾何の融合である。 弟子に、広中平祐、デヴィッド・マンフォード、ロビン・ハーツホーンら著名な数学者がたくさんおり、優れた指導者でもあった。.

新しい!!: 代数幾何学とオスカー・ザリスキ · 続きを見る »

グレブナー基底

レブナー基底(グレブナーきてい、Gröbner basis)は、多変数多項式の簡約化が一意に行える多項式の集合である。多変数の連立代数方程式の解を求める際などに利用される(#計算例参照)。 グレブナー基底を求めるアルゴリズムとしては、ブッフベルガーアルゴリズム(Buchberger's algorithm)があり、数式処理の分野での連立代数方程式の解法として使われている。また、可換環論、代数幾何、微分方程式論、整数計画問題などに出てくる様々な数学的対象物を構成するための基礎となっている。.

新しい!!: 代数幾何学とグレブナー基底 · 続きを見る »

終結式

数学において、2つの多項式の終結式(しゅうけつしき、resultant)はそれらの係数を不定元とする整係数多項式であり、これが 0 になることと多項式が(係数体の適当な拡大体において)共通根を持つことが同値である、あるいは同じことだが、(多項式の係数体上)共通因子を持つことと同値である。古い文献では eliminant(消去式)と呼ばれることもある。 終結式は数論において、直接あるいは判別式を通して、広く用いられる。判別式は本質的に多項式とその微分の終結式である。有理係数あるいは多項式係数の2つの多項式の終結式はコンピュータで効率的に計算できる。それは の基本的なツールであり、たいていの数式処理システムの組み込み関数である。それはとりわけ、 (CAD), 有理関数の逆微分、二変数多項式方程式によって定義された曲線の描画、に対して使われる。.

新しい!!: 代数幾何学と終結式 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 代数幾何学と直線 · 続きを見る »

複素多様体

微分幾何学で複素多様体(ふくそたようたい、complex manifold)とは、多様体上の各点の開近傍が、Cn の中の単位開円板への正則な座標変換を持つ多様体のことを言う。座標変換が正則である場合には、Cn の中で、コーシー・リーマンの方程式の制約を受ける。 複素多様体という言葉は、上の意味で可積分複素多様体として特徴づけることができる。 One must use the open unit disk in Cn as the model space instead of Cn because these are not isomorphic, unlike for real manifolds.

新しい!!: 代数幾何学と複素多様体 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

新しい!!: 代数幾何学と零点 · 続きを見る »

森重文

森 重文(もり しげふみ、1951年(昭和26年) 2月23日 - )は日本の数学者。理学博士(京都大学、1978年)、京都大学名誉教授。専門は代数幾何学における双有理幾何学で、代数幾何学での業績により1990年にフィールズ賞を受賞。名古屋大学教授、京都大学数理解析研究所教授、所長、名古屋大学特別教授、京都大学高等研究院特別教授、所長を歴任。ハーバード大学、プリンストン高等研究所、マックス・プランク研究所、コロンビア大学など、海外での研究経験も豊富であった。数学分野での国際的な協力を行う非政府組織であり、国際数学者会議の主催団体である国際数学連合の総裁にアジア人としては初めて選出された。愛知県名古屋市出身。.

新しい!!: 代数幾何学と森重文 · 続きを見る »

極小モデル

代数幾何学では極小モデルプログラム(minimal model program)が代数多様体の双有理分類の一部となっている。その目標は、任意の複素射影多様体のできるだけ単純な双有理モデルと構成することである。この主題の起源は、により研究された曲面の古典的双有理幾何学にあり、現在は代数幾何学の活発な研究領域となっている。.

新しい!!: 代数幾何学と極小モデル · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 代数幾何学と楕円 · 続きを見る »

概型

数学における概型あるいはスキーム (scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。 スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。.

新しい!!: 代数幾何学と概型 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 代数幾何学と浮動小数点数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 代数幾何学と数学 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 代数幾何学と曲線 · 続きを見る »

ここにリダイレクトされます:

代数幾何複素代数幾何学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »