ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ワイヤレス電力伝送と磁界調相結合

ショートカット: 違い類似点ジャカード類似性係数参考文献

ワイヤレス電力伝送と磁界調相結合の違い

ワイヤレス電力伝送 vs. 磁界調相結合

ワイヤレス電力伝送(わいやれすでんりょくでんそう、、)は、コードレス電話、電気シェーバー、電動歯ブラシなどに使用されており、金属接点やコネクタなどを介さずに電力を伝送すること、およびその技術である。ワイヤレス給電、ワイヤレス充電、非接触電力伝送などとも呼ばれる。二次電池を内蔵した機器に電力を送る場合、非接触充電(inductive charging)などと呼ばれる。 このうち電磁誘導を利用した技術は電磁気学の相互誘導作用を基本としながら、これに高度共振()の概念を導入している。. accessdate.

ワイヤレス電力伝送と磁界調相結合間の類似点

ワイヤレス電力伝送と磁界調相結合は(ユニオンペディアに)共通で23ものを持っています: マサチューセッツ工科大学ワットテスラコイルニコラ・テスラダイフクインダクタンスエバネッセント場オークランド大学ガスタービンエンジングリーン・エレクトロニクスコンデンサソレノイドCQ出版短絡インダクタンス磁場結合係数表皮効果超電導リニアQ値Qi (ワイヤレス給電)RFIDWiTricity漏れインダクタンス

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

マサチューセッツ工科大学とワイヤレス電力伝送 · マサチューセッツ工科大学と磁界調相結合 · 続きを見る »

ワット

ワット(watt, 記号: W)とは仕事率や電力、工率、放射束、をあらわすSIの単位(SI組立単位)であるJIS Z 8203:2000 国際単位系 (SI) 及びその使い方。.

ワイヤレス電力伝送とワット · ワットと磁界調相結合 · 続きを見る »

テスラコイル

テスラコイル()は、高周波・高電圧を発生させる共振変圧器である。ニコラ・テスラによって考案された。 ニコラ・テスラによって考案されたものは、空芯式共振コイルとスパークギャップを用い、二次コイルの共振を利用して高周波・高電圧を発生させるものである。スパークギャップとコイル体からなり、コイル体は巻数の少ない一次コイルと多数巻き上げた空心の二次コイル、そして放電極である容量球から出来上がっている。容量球の大小により二次コイルの共振周波数を調整する。浮遊容量による影響が大きく、強力な放電をさせようとした場合の再現性が悪いことから不明な点の多いコイルとされる。テスラコイルの改良型として、半導体駆動回路を使用したSSTC(Solid State Tesla Coil)や共振コイルを別に設けて昇圧するマグニファイヤーなどがある。.

テスラコイルとワイヤレス電力伝送 · テスラコイルと磁界調相結合 · 続きを見る »

ニコラ・テスラ

ラボラトリーでの実験風景。 ニコラ・テスラ(Никола Тесла, Nikola Tesla, 1856年7月10日 - 1943年1月7日)は、19世紀中期から20世紀中期の電気技師、発明家である。交流電気方式、無線操縦、蛍光灯、空中放電実験で有名なテスラコイルなど多数の発明や、「世界システム」なる全地球的送電システムなど壮大な提唱もあり、磁束密度の単位「テスラ」にその名を残している。 8つの言語に堪能で、詩作、音楽、哲学にも精通し、電流戦争ではトーマス・エジソンのライバルだった。.

ニコラ・テスラとワイヤレス電力伝送 · ニコラ・テスラと磁界調相結合 · 続きを見る »

ダイフク

株式会社ダイフク(英: Daifuku Co., Ltd.)は、大阪市西淀川区に本社を置く物流システム、立体式の自動倉庫のメーカーである。自動車生産ラインのコンベヤシステム、洗車機、電子機器用部品などの製造も手がけている。 ブランドメッセージは「Always an Edge Ahead」(オールウェイズ・アン・エッジ・アヘッド)。.

ダイフクとワイヤレス電力伝送 · ダイフクと磁界調相結合 · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

インダクタンスとワイヤレス電力伝送 · インダクタンスと磁界調相結合 · 続きを見る »

エバネッセント場

バネッセント場(エバネッセントば、)とは、電磁波(光)が特定の条件下において金属など反射性の媒質内部に誘起する電磁場の変動をいう。エバネッセント場から放出(反射)される電磁波はエバネッセント波やエバネッセント光、近接場光と呼ばれる。 屈折率の高い媒質から低い媒質に電磁波が入射する場合、入射角をある臨界角以上にすると電磁波は全反射するが、その際には波数の(境界面に対する)垂直成分が虚数になっている為に、1波長程度まで低媒質側の内部に電磁波が浸透することになる。 エバネッセント波は反射した物体の表面近傍の状態を観測できる為に近年注目を集めている。ひとつには屈折とは異なる物理現象である為に、波長よりも短い構造を反映することができ波長による回折限界を超えた分解能での観測が可能になる。この原理を応用した観測装置として、フォトン走査型近接場光顕微鏡が挙げられる。 あるいは、光が試料の表面内部に浸透するので、反射光を用いる赤外吸光分析の一種、減衰全反射(ATR)法などにも応用されている。 また、負の屈折率を持つメタマテリアルではエバネッセント場の強度が指数関数的に増大するため、境界面より離れた位置でもエバネッセント場による観測が可能となり、特に完全レンズにおいては無限の解像度が得られる。.

エバネッセント場とワイヤレス電力伝送 · エバネッセント場と磁界調相結合 · 続きを見る »

オークランド大学

ークランド大学(、Te Whare Wānanga o Tāmaki Makaurau)は、ニュージーランド北島オークランド市に所在するニュージーランドを代表する国立大学。.

オークランド大学とワイヤレス電力伝送 · オークランド大学と磁界調相結合 · 続きを見る »

ガスタービンエンジン

タービンエンジンは、原動機の一種であり、燃料の燃焼等で生成された高温のガスでタービンを回して回転運動エネルギーを得る内燃機関である。重量や体積の割に高出力が得られることから、現在ではヘリコプターを含むほとんどの航空機に動力源として用いられている。また、始動時間が短く冷却水が不要なことから非常用発電設備として、さらに1990年代から大規模火力発電所においてガスタービン・蒸気タービンの高効率複合サイクル発電(コンバインドサイクル発電)として用いられている。.

ガスタービンエンジンとワイヤレス電力伝送 · ガスタービンエンジンと磁界調相結合 · 続きを見る »

グリーン・エレクトロニクス

『グリーン・エレクトロニクス』はCQ出版社が出版しているパワーエレクトロニクス技術者向けの季刊誌である。.

グリーン・エレクトロニクスとワイヤレス電力伝送 · グリーン・エレクトロニクスと磁界調相結合 · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

コンデンサとワイヤレス電力伝送 · コンデンサと磁界調相結合 · 続きを見る »

ソレノイド

レノイド ソレノイドにより発生した磁界(断面図) ソレノイド(フランス語の solénoïde または、ギリシャ語 solen 「管、導管」とギリシャ語 eidos 「形、形状」との合成語)は、3次元のコイルで、螺旋状、特に密巻きにした形状(層を重ねることもある)のもののことである(2次元の、平面上の渦巻状(スパイラル)のものはコイルだがソレノイドではない)。特に、ふつう絶縁電線でできていて、電流を流して磁場を発生する目的のものやそれを利用した装置を指すことが多い。コイルの場合,ソレノイドコイルは,空芯単巻コイルと意味によって表すときもある。コイルと同じく、電線自体を指して巻線と言う。 物理学では、ふつう磁場を発生する目的のものを指す。しばしば金属のコアの周りに巻く。制御可能な磁場の発生や、電磁石に利用する。特に、(実験を行うような)広い空間に一様な磁場を発生するように設計したものを指す。 ソレノイドと電磁石との相違は、前者が可動する鉄芯を持つのに対し、後者の鉄芯は固定され可動部がない点である。.

ソレノイドとワイヤレス電力伝送 · ソレノイドと磁界調相結合 · 続きを見る »

CQ出版

CQ出版株式会社(シーキューしゅっぱん)は、東京都文京区に本社を置く出版社。アマチュア無線・電子工学関連の雑誌、書籍を発行する。.

CQ出版とワイヤレス電力伝送 · CQ出版と磁界調相結合 · 続きを見る »

短絡インダクタンス

短絡インダクタンス(たんらくいんだくたんす)、()は、変圧器(トランス)の一次巻線あるいは二次巻線の一方を短絡して他方から測った場合のインダクタンスである。一般に変圧器の漏れインダクタンスと呼ばれることが多い。しかし、漏れインダクタンスという用語は電気学会および書籍関係においては、一次巻線あるいは二次巻線の一方の巻線と鎖交し、他方の巻線と鎖交しない磁束(漏れ磁束)によって生じるインダクタンスであるとされており、短絡インダクタンスを慣用的に漏れインダクタンスと呼ぶことで混乱を生じている。.

ワイヤレス電力伝送と短絡インダクタンス · 短絡インダクタンスと磁界調相結合 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

ワイヤレス電力伝送と磁場 · 磁場と磁界調相結合 · 続きを見る »

結合係数

結合係数(けつごうけいすう、coupling coefficient. または inductive coupling factor.)は、変圧器(トランス)の一次巻線と二次巻線との結合の度合いを示す無次元数である。記号ではk で表し、日本語ではどちらも結合係数であるが、定義上ではcoupling coefficientは-1以上+1以下の値をとり、inductive coupling factorは0以上1までの値をとる。この値が1に近い変圧器を密結合変圧器(または単に変圧器)という。通常の密結合変圧器の結合係数はk.

ワイヤレス電力伝送と結合係数 · 磁界調相結合と結合係数 · 続きを見る »

表皮効果

表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。.

ワイヤレス電力伝送と表皮効果 · 磁界調相結合と表皮効果 · 続きを見る »

超電導リニア

超電導リニア(ちょうでんどうリニア、英訳:SCMaglev, Superconducting Maglev, Superconducting Magnetic Levitation Railway)は、鉄道総合技術研究所(鉄道総研)および東海旅客鉄道(JR東海)により開発が進められている磁気浮上式リニアモーターカーである。超電導電磁石(超伝導電磁石)を利用するため、開発を推進するJR東海では超電導リニアと呼んでいるが、国土交通省では「超電導磁気浮上方式鉄道」という呼び方もしており、また「JRマグレブ」という呼び方もある。マグレブ (Maglev) とは英語の“magnetic levitation”(磁気浮上)を省略した呼称である。 新幹線を始めとする、従来の軌道接地走行の技術的問題点を回避できる浮上走行を行う。磁気浮上方式鉄道としては他に、ドイツのトランスラピッドや日本のHSSTなどがあるが、この2者は常電導電磁石による浮上であり、超電導電磁石によるリニアモーターでの走行は、世界でもこの超電導リニアのみである。超電導磁石による浮上・案内という基本原理は、米国のPowell、Danby両博士の米国機械学会誌への発表によるものであるが、その後、基礎技術から日本で独自に研究・開発が行われた点も特筆すべき事柄である。技術的には既に実用化段階にあり、有人の試験走行で2003年(平成15年)12月にMLX01の3両編成が鉄道における世界最高速度となる581km/hを記録、2015年(平成27年)4月16日にはL0系7両編成が590km/h、同月21日には同じくL0系7両編成が603km/hを記録し、MLX01の世界記録を更新した。 2027年を目標に中央新幹線として、品川駅 - 名古屋駅間の営業運転を開始する予定である。.

ワイヤレス電力伝送と超電導リニア · 磁界調相結合と超電導リニア · 続きを見る »

Q値

Q値(、品質係数Q)は主に振動の状態を表す無次元量である。弾性波の伝播においては、媒質の吸収によるエネルギーの減少に関係する値である。振動においては、1周期の間に系に蓄えられるエネルギーを、系から散逸するエネルギーで割ったもので、この値が大きいほど振動が安定であることを意味する。また、Q値は振幅増大係数とされる場合もある。これは、共振周波数近傍での強制振動における最大振幅が静的強制力による変位のQ倍となることから解釈される。振動子や電気回路の場合には一般にQ値が高いほうが望ましいが、逆にQ値が高いほど応答性が悪くなり、起動時間が長くなるという面もある。 振動する物理量の実際の振動状態は、周波数軸に展開した振動振幅()や位相()のスペクトラムにより理解される。振動スペクトラムの共振ピーク近傍の形はその振動系の振動状態を特徴付ける。Q値とは で定義される無次元数。ここで、\omega_0、\omega_1、\omega_2 はそれぞれ共振ピークでの共振周波数、共振ピークの左側において振動エネルギーが共振ピークの半値となる周波数、共振ピークの右側において振動エネルギーが半値となる周波数である。ここで を半値幅と呼ぶ。 Q値の低い機械振動系は振動エネルギーの分散が大きい系である。 Q値の高い構造物では一旦振動が開始されると振動が長く続く。 Q値が低い素材は振動がすぐに減少する性質がある。これを利用して防振材、防音材に用いられる。.

Q値とワイヤレス電力伝送 · Q値と磁界調相結合 · 続きを見る »

Qi (ワイヤレス給電)

製品の例(スマートフォンとその充電台) Qi(チー)とは、ワイヤレスパワーコンソーシアム(Wireless Power Consortium; WPC)が策定したワイヤレス給電の国際標準規格である。現在、携帯電話やスマートフォンを対象とした15W以下の低電力向け規格のみ策定されている。名称の由来は中国語の「気」(、、)。 NTTドコモでは、Qi規格に準拠したワイヤレス充電機能をおくだけ充電と称しており、登録商標(第5477771号ほか)を保有している。.

Qi (ワイヤレス給電)とワイヤレス電力伝送 · Qi (ワイヤレス給電)と磁界調相結合 · 続きを見る »

RFID

非接触ICカード RFID(radio frequency identifier)とは、ID情報を埋め込んだRFタグから、電磁界や電波などを用いた近距離(周波数帯によって数cm~数m)の無線通信によって情報をやりとりするもの、および技術全般を指す。 従来のRFタグは、複数の電子素子が乗った回路基板で構成されていたが、近年、小さなワンチップのIC (集積回路)で実現できるようになってきた。 これはICタグと呼ばれ、そのサイズからゴマ粒チップと呼ばれることもある。 一般的にRFIDとはICタグ、その中でも特にパッシブタイプのICタグのみを指して用いられることが多い。 非接触ICカードも、RFIDと同様の技術を用いており、広義のRFIDの一種に含まれる。 非接触ICカードは乗車カードや電子マネー、社員証やセキュリティロックなどの認証用など色々な用途がある。日本では、FeliCa 規格が支配的である。 狭義では、タグとリーダとの間の無線通信技術であるが、技術分野としてはそれにとどまらず、タグを様々な物や人に取り付け、それらの位置や動きをリアルタイムで把握するという運用システム全般まで含めて語られる。 実世界のオブジェクトを、デジタルの仮想世界と結びつけて認識や操作ができるようになるという点が、社会的に様々な波及効果を与えると考えられている(期待される用途を参照)。.

RFIDとワイヤレス電力伝送 · RFIDと磁界調相結合 · 続きを見る »

WiTricity

ワイトリシティ (WiTricity) は、2006年11月にマサチューセッツ工科大学 (MIT)のマリン・ソーリャチッチ(Marin Soljačić)が発表した磁界共振技術によるワイヤレス給電技術に基づいて研究メンバーがスピンアウトして設立したベンチャー企業であり、トヨタ自動車、IHI、新電元工業他多くの企業に技術をライセンス提供している。.

WiTricityとワイヤレス電力伝送 · WiTricityと磁界調相結合 · 続きを見る »

漏れインダクタンス

漏れインダクタンス(もれいんだくたんす)または、漏洩インダクタンス(ろうえいいんだくたんす)または、リーケージインダクタンス()は、変圧器(トランス)において、一次巻線と二次巻線との結合係数が小さい場合に、変圧器を構成する巻線の一部が変圧作用に寄与せず、チョークコイルと等価な成分となって生じるものをいう。 一次巻線と二次巻線とが完全な結合をした(結合係数k.

ワイヤレス電力伝送と漏れインダクタンス · 漏れインダクタンスと磁界調相結合 · 続きを見る »

上記のリストは以下の質問に答えます

ワイヤレス電力伝送と磁界調相結合の間の比較

磁界調相結合が73を有しているワイヤレス電力伝送は、102の関係を有しています。 彼らは一般的な23で持っているように、ジャカード指数は13.14%です = 23 / (102 + 73)。

参考文献

この記事では、ワイヤレス電力伝送と磁界調相結合との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »