ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

レイノルズ数と流体力学

ショートカット: 違い類似点ジャカード類似性係数参考文献

レイノルズ数と流体力学の違い

レイノルズ数 vs. 流体力学

レイノルズ数(Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。 概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが、レイノルズ数はオズボーン・レイノルズ (1842–1912) の名にちなんで名づけられており、1883年にその利用法について普及させた。 流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。 また、レイノルズ数は層流や乱流のように異なる流れ領域を特徴づけるためにも利用される。層流については、低いレイノルズ数において発生し、そこでは粘性力が支配的であり、滑らかで安定した流れが特徴である。乱流については、高いレイノルズ数において発生し、そこでは慣性力が支配的であり、無秩序な渦や不安定な流れが特徴である。 実際には、レイノルズ数の一致のみで流れの相似性を保証するには十分ではない。流体流れは一般的には無秩序であり、形や表面の粗さの非常に小さな変化が異なる流れをもたらすことがある。しかしながら、レイノルズ数は非常に重要な指標であり、世界中で広く使われている。. 流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

レイノルズ数と流体力学間の類似点

レイノルズ数と流体力学は(ユニオンペディアに)共通で13ものを持っています: 層流乱流圧縮性流れナビエ–ストークス方程式ハーゲン・ポアズイユ流れオズボーン・レイノルズジョージ・ガブリエル・ストークス空気粘度運動非圧縮性流れ風洞

層流

層流(そうりゅう、英語:laminar flow)とは、各流体要素が揃って運動して作り出す流れのことである。.

レイノルズ数と層流 · 層流と流体力学 · 続きを見る »

乱流

乱流(らんりゅう、turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。 乱流の確立した定義は現時点においても存在しないが、数学的にはナヴィエ・ストークス方程式の非定常解の集合であるということができる。層流と乱流のおおよその区別はレイノルズ数によって判断され、レイノルズ数の値が大きいと乱流と判断される。また、層流が乱流に遷移するときのレイノルズ数を臨界レイノルズ数という。 生活の中でのわかりやすい例としては水道の蛇口から流れる水がある。水道の水は流れが少ないときはまっすぐに落ちるが、少し多くひねると急に乱れ出す。このとき前者が層流、後者が乱流である。生活の中で見られる空気や水の流れはほぼ全てが乱流であるだけでなく、熱や物質を輸送し拡散する効果が非常に強いので工学的にも非常に重要である。 乱流の数値シミュレーションは、気象予報や自動車等の空力設計からノートパソコンの冷却まで工学的には非常に幅広く利用されている。しかし高い計算機性能を要求するため、スーパーコンピュータなどHPC(高性能計算)の重要な用途の一つになっている。.

レイノルズ数と乱流 · 乱流と流体力学 · 続きを見る »

圧縮性流れ

圧縮性流れ(あっしゅくせいながれ)とは、流体力学における、密度が圧力の変化に応じて変化する流体である。縮む流体、圧縮流とも呼ばれる。圧縮性は特に気体で顕著に現れるため、圧縮性流れを扱う分野は、高速空気力学とも呼ばれる。 逆に密度が圧力によって変化しない流れを非圧縮性流れという。圧縮性流れと非圧縮性流れの最も顕著な違いは、圧縮性流れモデルは衝撃波とチョーク流れの存在を可能にすることである。.

レイノルズ数と圧縮性流れ · 圧縮性流れと流体力学 · 続きを見る »

ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

ナビエ–ストークス方程式とレイノルズ数 · ナビエ–ストークス方程式と流体力学 · 続きを見る »

ハーゲン・ポアズイユ流れ

ハーゲン・ポアズイユ流れ(ハーゲン・ポアズイユながれ、Hagen-Poiseuille flow)とは、管径が一定の円管を流れる粘性をもつ流体(非圧縮性のニュートン流体)の定常層流解禰津・冨永『水理学』、p.123。、つまり円形の管の中をゆっくり流れる水などの流れ方に関する厳密解である。このような流れでは非圧縮性ニュートン流体の運動方程式であるナビエ・ストークス方程式を解析的に解くことができ、この流れは数少ない厳密解のうち最も有名でかつ重要な流れである禰津・冨永『水理学』、p.123。。 特にハーゲン・ポアズイユの法則(Hagen-Poiseuille law)またはハーゲン・ポアズイユの式(Hagen-Poiseuille equation)と言った場合には、このような流れにおける(体積)流量に関する公式のことを指す日下部・檀・湯城『水理学』、p.81。。また、「ハーゲン」を省略してポアズイユ流れとも呼ばれるが、概要で説明されるようにこの呼び方は正当な評価とは言えない。.

ハーゲン・ポアズイユ流れとレイノルズ数 · ハーゲン・ポアズイユ流れと流体力学 · 続きを見る »

オズボーン・レイノルズ

ボーン・レイノルズ(Osborne Reynolds、1842年8月23日 - 1912年2月21日)は、アイルランド生まれのイギリスの物理学者。流体力学を理解する上で重要な貢献をした。さらには、固体と流体間での熱伝導に関する研究ではボイラーとコンデンサー設計において改善をもたらしている。.

オズボーン・レイノルズとレイノルズ数 · オズボーン・レイノルズと流体力学 · 続きを見る »

ジョージ・ガブリエル・ストークス

初代准男爵、サー・ジョージ・ガブリエル・ストークス(Sir George Gabriel Stokes, 1st Baronet, 1819年8月13日 - 1903年2月1日)は、アイルランドの数学者、物理学者である。 流体力学、光学、数学などの分野で重要な貢献をした。1851年に王立協会のフェローに選出され、1885年から1890年まで会長を務めた。1849年から死去する1903年まで、ルーカス教授職も務めている。.

ジョージ・ガブリエル・ストークスとレイノルズ数 · ジョージ・ガブリエル・ストークスと流体力学 · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

レイノルズ数と空気 · 流体力学と空気 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

レイノルズ数と粘度 · 流体力学と粘度 · 続きを見る »

運動

運動(うんどう)とは、.

レイノルズ数と運動 · 流体力学と運動 · 続きを見る »

非圧縮性流れ

非圧縮性流れ(ひあっしゅくせいながれ)とは流体力学において、流体粒子の内部で密度が一定の流体である。縮まない流体とも呼ばれる。連続体力学における非圧縮性の概念を流体に適用したものである。 言い換えると、非圧縮性とは流体の速度の発散が 0 になることである(この表現が等価である理由は後述)。 非圧縮性流れは、流体自体が非圧縮性であることを意味するものではない。圧縮性流体でも(適切な条件の下で)良い近似で非圧縮性流れとしてモデル化できる。非圧縮性流れは流体と同じ速度で移動する流体粒子の中で密度が一定であることを意味する。 非圧縮性流れに対して、密度が変化する流れを圧縮性流れという。厳密な意味での非圧縮性流れは自然界には存在しないが、一般的に流れのマッハ数(局所音速と流速との比)が小さい流れに対しては圧縮性の影響は無視できる。マッハ数が0.3を超えるか、または流体が非常に大きな圧力変化を受ける場合に、圧縮性の影響は考慮される。.

レイノルズ数と非圧縮性流れ · 流体力学と非圧縮性流れ · 続きを見る »

風洞

洞(ふうどう、wind tunnel, WT)は、人工的に小規模な流れを発生させ、実際の流れ場を再現・観測する装置ないし施設。発生させた流れの中に縮小模型などの試験体を置き、局所的な風速や圧力の分布・力・トルクの計測、流れの可視化などを行う。 風洞を用いたこのような実験は風洞実験あるいは風洞試験と呼ばれ、航空機・鉄道車両・自動車など高速で移動する輸送機械や、高層ビル・橋梁など風の影響を受け易い建築物の設計に用いられている。風洞実験は、流体力学全体から見ると、理論 (Analitycal Fluid Dynamics, AFD) と数値計算 (Computational Fluid Dynamics, CFD) と対比して実験流体力学 (Experimental Fluid Dynamics, EFD) と呼ばれる研究手法に位置づけられる。.

レイノルズ数と風洞 · 流体力学と風洞 · 続きを見る »

渦 水流が岩(石)にぶつかり発生している渦 航空機の作る渦(カラースモークで着色) 宇宙から見た台風 NASA/ESA) 渦(うず)とは、流体やそれに類する物体が回転して発生する螺旋状のパターンのこと。渦巻き(うずまき)などとも言う。.

レイノルズ数と渦 · 流体力学と渦 · 続きを見る »

上記のリストは以下の質問に答えます

レイノルズ数と流体力学の間の比較

流体力学が94を有しているレイノルズ数は、63の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は8.28%です = 13 / (63 + 94)。

参考文献

この記事では、レイノルズ数と流体力学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »