ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

モルフォゲン

索引 モルフォゲン

モルフォゲン (morphogen) は発生、変態、再生の際に局在する発生源から濃度勾配を持って発せられ、形態形成を支配する物質である。発生源の近くの組織で高濃度に達したり、時には長く持続したりして空間的情報を与える。 最も研究されているモルフォゲンのいくつかは、ショウジョウバエの初期胚のそれである。ショウジョウバエは通常、初めの13回の核分裂をシンシチウム(合胞体)として、各々の核への細胞膜の形成に先駆ける。基本的に14回目の分裂まで、胚は1つの細胞に8000の核が外側の膜の近くへ均等に置かれ、独立した膜がそれぞれの核を覆って独立した細胞を作る。その結果、BicoidやHunchbackといったハエ胚の転写因子がモルフォゲンとして働くことが可能となる。なぜなら、これらは特化した細胞内シグナル系に頼らずとも滑らかな濃度勾配を作ることで、核の間を拡散することが自由であるからである。しかし、ホメオボックス転写因子が直接細胞膜を通り抜けることができる証拠がある。この機構は、細胞膜形成したシステム内の形態形成に大きく関与しているとは一般に信じられていない。 ヒト胚やその後のショウジョウバエ胚といったほとんどの発生系で、シンシチウムは(骨格筋のように)まれであり、モルフォゲンは一般的に分泌されたシグナルタンパク質である。これらのタンパク質は膜貫通受容体タンパク質の細胞外ドメインに結合し、シグナル伝達の産生過程をモルフォゲンのレベルを核へ通信するために使用する。 Decapentaplegic、Hedgehog、Wingless、Notch、上皮増殖因子、繊維芽細胞増殖因子といった少数の相同性のタンパク質は、多くの種でよく知られたモルフォゲンである。 モルフォゲンは化学的ではなく概念的に定義されるものであり、レチノイン酸のような単純な化学物質がたびたびモルフォゲンとして作用する。.

22 関係: 受容体合胞体変態上皮成長因子中胚葉形態形成化学物質レチノイン酸ホメオボックスショウジョウバエシグナル伝達タンパク質再生細胞膜細胞核線維芽細胞増殖因子発生生物学骨格筋転写因子胚発生胚葉

受容体

受容体(じゅようたい、receptor)とは、生物の体にあって、外界や体内からの何らかの刺激を受け取り、情報として利用できるように変換する仕組みを持った構造のこと。レセプターまたはリセプターともいう。下記のいずれにも受容体という言葉を用いることがある。.

新しい!!: モルフォゲンと受容体 · 続きを見る »

合胞体

合胞体(ごうほうたい)またはシンシチウム(syncytium, pl. syncytia)は、動物に見られる、複数の核を含んだ細胞のこと。これに対して原生生物や菌類に見られる、一つの細胞に多数の核を持つ状態のものは多核体と呼ばれ、区別される。 合胞体は、数個から数千個もの核を含んだ細胞質の塊とも呼べる、一つの巨大な細胞である。合胞体が形成されるメカニズムは大きく二つに分けられる。一つは不完全な細胞分裂によって一個の細胞内に複数の核が作られる場合、もう一つは正常に形成された細胞同士が細胞融合を起こして複数の核を持つ巨大な細胞になる場合である。前者には昆虫の初期胚形成が、後者には骨格筋繊維の形成や哺乳類の胎盤、ウイルス感染細胞が、それぞれ代表的な例として挙げられる。なお、多核体は普通はこの前者の型に当たる。.

新しい!!: モルフォゲンと合胞体 · 続きを見る »

変態

変態(へんたい、metamorphosis)とは、動物の正常な生育過程において形態を変えることを表す。昆虫類や甲殻類などの節足動物に典型的なものが見られる。.

新しい!!: モルフォゲンと変態 · 続きを見る »

上皮成長因子

上皮成長因子(じょうひせいちょういんし、Epidermal Growth Factor; EGF)は53アミノ酸残基及び3つの分子内ジスルフィド結合から成る6045 Daのタンパク質。細胞表面に存在する上皮成長因子受容体 (EGFR) にリガンドとして結合し、細胞の成長と増殖の調節に重要な役割をする。上皮増殖因子、上皮細胞成長因子、上皮細胞増殖因子とも呼ばれる。胃酸分泌抑制因子β、ウロガストロンβと同一物質である。1962年、マウス新生児に投与すると成長を促進する物質として、スタンリー・コーエンらによって唾液腺から発見された。.

新しい!!: モルフォゲンと上皮成長因子 · 続きを見る »

中胚葉

中胚葉(ちゅうはいよう 英:mesoderm)とは、動物の発生初期に区別される細胞群の名称である。外胚葉と内胚葉の間を埋めるように発達し、筋肉や体腔などを作る。中胚葉を持つ動物を三胚葉性動物という。.

新しい!!: モルフォゲンと中胚葉 · 続きを見る »

形態形成

形態形成(けいたいけいせい、Morphogenesis)は、生物の形態が形成される過程である。これは細胞の成長と分化と並ぶ、発生生物学の基礎的な三つの見方の一つに挙げられる。.

新しい!!: モルフォゲンと形態形成 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: モルフォゲンと化学物質 · 続きを見る »

レチノイン酸

レチノイン酸(Retinoic acid)は、ビタミンA(レチノール)の代謝物質で、成長や発達に必要なビタミンAの機能を媒介する。レチノイン酸は、脊椎動物にとって必須である。胚の発生初期には、胚の特定領域でレチノイン酸が生成し、胚の後部の発達をガイドする細胞間シグナル分子として、胚の軸に沿った前部/後部を決定する助けとなる。この機構は、胚の発生初期にホメオティック遺伝子によって制御される。 胚の発達におけるレチノイン酸の主要な役割は、分化のコントロールであるが、この効果自体副作用を引き起こす原因にもなる。例として挙げると癌やニキビの治療に用いられるイソトレチノイン等のレチノイン酸系薬剤の高い催奇性の原因となり、ビタミンA前駆体(パルミチン酸レチニル)やレチノイン酸自体の経口での大量摂取でも、同じ機構により催奇性を示す可能性がある。.

新しい!!: モルフォゲンとレチノイン酸 · 続きを見る »

ホメオボックス

ホメオドメインとDNAの複合体。ホメオドメインはヘリックス・ターン・ヘリックス構造を持つ。 ホメオボックス(homeobox)とは、動物、植物および菌類の発生の調節に関連する相同性の高いDNA塩基配列である。ホメオボックスを持つ遺伝子はホメオボックス遺伝子と呼ばれ、ホメオボックス遺伝子ファミリーを構成する。 ホメオボックスはおおよそ180塩基対があり、DNAに結合しうるタンパク質部位(ホメオドメイン)をコードする。ホメオボックス遺伝子は、例えば足を作るのに必要なすべての遺伝子など、典型的に他の遺伝子のカスケードをスイッチする転写因子をコードする。ホメオドメインはDNAへ特異的に結合する。しかしながら、単独のホメオドメインタンパク質の特異性は通常、その要求される標的遺伝子だけを認識するに充分ではない。ほとんどの場合、ホメオドメインタンパクは他の転写因子また、しばしばホメオドメインタンパク質との複合体としてその標的遺伝子のプロモーター領域で働いている。そのような複合体は単独のホメオドメインタンパク質よりも高度な標的特異性を持つ。 ホメオドメインを含むタンパク質は大きく2つに分類される場合がある。ひとつはゲノム中に特徴的なクラスターを形成している Hox遺伝子群に由来し、Hox タンパク質 (または単に Hox) と呼ばれる。もうひとつは Hox 以外のゲノム中に散在する non-Hox 遺伝子に由来し、non-Hox ホメオ蛋白質とされる。 哺乳類では Hox gene は異なった染色体上に4個のクラスターを形成しており、塩基配列の相同性から13のグループに分けられ、3' 側から番号がつけられている。発生過程ではこの順番に対応して前後軸に沿った発現をし、その位置に特徴的な体節構造を誘導する。これらのことはショウジョウバエのホメオティック変異の解析が端緒となった。 non-Hox 遺伝子には、NK-2ファミリーやMSXファミリーがあり、これらもさまざまな発生分化過程に関わる進化的に保存されたファミリーを形成していることがわかっている。また出芽酵母の性決定を支配するMAT遺伝子もホメオボックスを持つ。 Hox遺伝子は体軸のパターン形成で機能する。そのため、特異的な体の部分の同一性を与えて、Hox遺伝子は、発生中の胎児や幼生で肢や他の体節の成長を決定する。それらの遺伝子の変異は余分な成長を引きおこすことがあり、典型的には無脊椎動物で機能的でない体の部分、例えばショウジョウバエのひとつの遺伝子の欠損のせいでaristapaedia複合体が頭の触角の場所から脚を生やさせる。脊椎動物でのHox遺伝子の変異は通常、誕生前に死亡する。 ホメオボックス遺伝子は初めにショウジョウバエで見つかり、続いて昆虫から爬虫類、哺乳類といった多くの他の種で同定された。右の図はラットのPit-1ホメオボックス含有タンパク質(紫)がDNAに結合している構造モデルである。Pit-1は成長ホルモン遺伝子転写の調整因子である。Pit-1は、POUドメインとホメオドメインの両方を使いDNAへ結合する転写因子のPOU DNA結合ドメインファミリーのひとつである。ホメオボックスは単細胞の酵母などの菌類や植物にすら見られる。このことはこの遺伝子ファミリーが非常に早くに進化して、形態形成の基本メカニズムが多くの生物で同じ事を示している。 ホメオボックス遺伝子の変異は簡単に目に見える表現型の変化を生み出す。上で示した触角の場所にある脚や、二対目の羽といったショウジョウバエの例がそれである。ホメオボックス遺伝子の重複は新しい体の部分を生むことができ、そのような重複が体節のある動物の進化には重要な可能性がある。 コンピューター計算に類似して、ホメオボックス遺伝子はサブルーチンの呼び出しに似ていると考えることができる。これは、DNAの別の場所にすでに存在しているサブシステム全ての産生のスイッチとなる。.

新しい!!: モルフォゲンとホメオボックス · 続きを見る »

ショウジョウバエ

ョウジョウバエ(猩猩蠅)は、ハエ目(双翅目)・ショウジョウバエ科 (Drosophilidae) に属するハエの総称である。科学の分野では、その一種であるキイロショウジョウバエ (Drosophila melanogaster) のことをこう呼ぶことが多い。この種に関しては非常に多くの分野での研究が行われているが、それらに関してはキイロショウジョウバエの項を参照。本項ではこの科全般を扱う。.

新しい!!: モルフォゲンとショウジョウバエ · 続きを見る »

シグナル伝達

本項においては、生体内におけるシグナル伝達(シグナルでんたつ; signal transduction)機構について記述する。 いかなる生命も周囲の環境に適応しなければならず、それは体内環境においても、個々の細胞においてすらも同様である。そしてその際には、何らかの形で情報を伝達しなければならない。この情報伝達機構をシグナル伝達機構と称し、通常、様々なシグナル分子によって担われる。それらへの応答として、細胞の運命や行動は決定される。.

新しい!!: モルフォゲンとシグナル伝達 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: モルフォゲンとタンパク質 · 続きを見る »

再生

再生(さいせい)とは、基本的には文字通り、「再び生きること」や「再び生かすこと」を広く指しており、.

新しい!!: モルフォゲンと再生 · 続きを見る »

細胞膜

動物細胞の模式図図中の皮のように見えるものが'''細胞膜'''、(1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 細胞膜(さいぼうまく、cell membrane)は、細胞の内外を隔てる生体膜。形質膜や、その英訳であるプラズマメンブレン(plasma membrane)とも呼ばれる。 細胞膜は細胞内外を単に隔てている静的な構造体ではなく、特異的なチャンネルによってイオンなどの低分子を透過させたり、受容体を介して細胞外からのシグナルを受け取る機能、細胞膜の一部を取り込んで細胞内に輸送する機能など、細胞にとって重要な機能を担っている。.

新しい!!: モルフォゲンと細胞膜 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: モルフォゲンと細胞核 · 続きを見る »

線維芽細胞増殖因子

FGF10とFGFR2bの細胞外ドメインの複合体の構造 線維芽細胞増殖因子(せんいがさいぼうぞうしょくいんし、、FGF)は、血管新生、創傷治癒、胚発生に関係する成長因子の一種。FGFはヘパリン結合性タンパク質で、細胞表面のプロテオグリカンの一種ヘパラン硫酸と相互作用を持つことがFGFのシグナル伝達に不可欠なことが明らかになっている。FGFは広範囲な細胞や組織の増殖や分化の過程において重要な役割を果たしている。.

新しい!!: モルフォゲンと線維芽細胞増殖因子 · 続きを見る »

発生生物学

生生物学(はっせいせいぶつがく, Developmental biology)とは多細胞生物の個体発生を研究対象とする生物学の一分野である。個体発生とは配偶子の融合(受精)から、配偶子形成を行う成熟した個体になるまでの過程のことである。広義には老化や再生も含む。.

新しい!!: モルフォゲンと発生生物学 · 続きを見る »

骨格筋

格筋(こっかくきん、skeletal muscle)は、動物の筋肉の一分類であり、骨格を動かす筋肉を指す。ここではヒトの骨格筋について記す。 骨格筋は組織学的には横紋筋であり、内臓筋が平滑筋であるのと対照をなしている。ただし浅頭筋などにみられる皮筋や、舌や咽頭、横隔膜のような内臓筋の一部も骨格を支えているわけではないが、骨格筋組織である横紋筋である。.

新しい!!: モルフォゲンと骨格筋 · 続きを見る »

転写因子

転写因子(てんしゃいんし)はDNAに特異的に結合するタンパク質の一群である。DNA上のプロモーターやエンハンサーといった転写を制御する領域に結合し、DNAの遺伝情報をRNAに転写する過程を促進、あるいは逆に抑制する。転写因子はこの機能を単独で、または他のタンパク質と複合体を形成することによって実行する。ヒトのゲノム上には、転写因子をコードする遺伝子がおよそ1,800前後存在するとの推定がなされている。.

新しい!!: モルフォゲンと転写因子 · 続きを見る »

胚(はい、独,英: Embryo)とは多細胞生物の個体発生におけるごく初期の段階の個体を指す。胚子ともいう。.

新しい!!: モルフォゲンと胚 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

新しい!!: モルフォゲンと胚発生 · 続きを見る »

胚葉

胚葉(はいよう、英:Germ layer)とは、多細胞動物の初期胚において、卵割によって形成される多数の細胞が、しだいに規則的に配列してできる、各上皮的構造のことである 。 真正後生動物(海綿動物を除く後生動物)はいずれも2または3種の胚葉を形成する。刺胞動物と有櫛動物では2種の胚葉、外胚葉と内胚葉を形成し、この体制は二胚葉性といわれる。左右相称動物ではこの2胚葉の間に第3の中胚葉を形成し、三胚葉性といわれる。特に脊椎動物では3種類の胚葉の区別が顕著である。各胚葉はその後、動物の全ての組織・器官を形成する。最も単純な後生動物である海綿動物は、1つの胚葉しか作らず、細胞の分化(襟細胞など)はあるものの、真の組織は形成しない。二胚葉性動物ではより複雑になり、組織の区別が生じる。さらに高等な左右相称動物では中胚葉も生じて、器官が形成される。.

新しい!!: モルフォゲンと胚葉 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »