ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ミトコンドリア

索引 ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

132 関係: ATPATP合成酵素原生動物原生生物嫌気呼吸小胞小胞体中心体乳酸乳酸性閾値人類代謝微小管微胞子虫後生動物心筋ミトコンドリアのシャトル系ミトコンドリア・イブミトコンドリア病ミトコンドリアDNAミドリムシノーベル化学賞マイトソームマスクメロンハプログループF (mtDNA)ポリン (タンパク質)ポール・ボイヤーヤヌスグリーンユビキノンラジカル (化学)リン・マーギュリスリンゴ酸リンゴ酸-アスパラギン酸シャトルリボソームリボソームRNAリケッチアリソソームトリプトファントリパノソーマプロテオバクテリアパラサイト・イヴビタミンCピルビン酸ピルビン酸デヒドロゲナーゼ複合体ピーター・ミッチェルデヒドロアスコルビン酸デオキシリボ核酸フマル酸ニコチンアミドアデニンジヌクレオチド呼吸...アナプレロティック反応アポトーシスアメーバアーケゾアアピコンプレックス門アデノシン三リン酸アデノシン二リン酸アスコルビン酸アセチルCoAイントロンイソクエン酸オットー・ワールブルクオキサロ酢酸カルニチンカスパーゼクリステクロララクニオン藻クエン酸クエン酸回路グリコーゲングルコースグルコーストランスポーターゲノムコハク酸コハク酸デヒドロゲナーゼゴルジ体シトクロムcジョン・E・ウォーカースプライソソーム共生動物粘菌粗面小胞体細胞細胞小器官細胞内共生説細胞質細胞質基質細胞膜細胞核紅色細菌維管束植物繊毛虫真核生物真正細菌終止コドン疎水性生体膜瀬名秀明発疹チフス発酵鞭毛遺伝子菌類補酵素A褐色脂肪組織解糖系骨格筋転写因子転移RNA能動輸送葉緑体脱共役タンパク質脱炭酸脂肪酸膜電位酸化ストレス酸化的リン酸化酵素電子伝達系電気化学ポテンシャル進化陸上植物NADH:ユビキノン還元酵素 (水素イオン輸送型)P53遺伝子植物水素イオン活性酸素液胞滑面小胞体悪性腫瘍 インデックスを展開 (82 もっと) »

ATP

ATP.

新しい!!: ミトコンドリアとATP · 続きを見る »

ATP合成酵素

ATP合成酵素(—ごうせいこうそ)とは、呼吸鎖複合体によって形成されたプロトン濃度勾配と膜電位からなるプロトン駆動力を用いて、ADPとリン酸からアデノシン三リン酸 (ATP) の合成を行う酵素である。別名ATPシンターゼ、呼吸鎖複合体V、複合体Vなど。 なお、シンテターゼはATPなどの高エネルギー化合物の分解と共役する反応を触媒する酵素を指すが、ATP合成に他のエネルギー化合物を用いることはないので、「ATPシンテターゼ」という呼称は正しくない。.

新しい!!: ミトコンドリアとATP合成酵素 · 続きを見る »

原生動物

原生動物(げんせいどうぶつ)とは単細胞生物のうち生態が動物的なもの。原虫とも。 歴史的には、生物を動物と植物に分けていた(2界説)頃に使われた分類群であり、動物「のうち」単細胞のものと定義されていた。 実際は雑多な生物の集まりであり、系統学的に妥当なグループに修正する試みもされたが、現在ではどの意味でも分類群としては使われず、大まかな総称として伝統的なグループを表すのに使われている。.

新しい!!: ミトコンドリアと原生動物 · 続きを見る »

原生生物

原生生物(げんせいせいぶつ, Protist)とは、生物の分類の一つ。真核生物のうち、菌界にも植物界にも動物界にも属さない生物の総称である。もともとは、真核で単細胞の生物、および、多細胞でも組織化の程度の低い生物をまとめるグループとして考えられたものである。いくつかの分類体系の中に認められているが、その場合も単系統とは考えておらず、現在では認めないことが多い。.

新しい!!: ミトコンドリアと原生生物 · 続きを見る »

嫌気呼吸

嫌気呼吸(けんきこきゅう)とは、最終電子受容体として酸素を用いない呼吸の総称である。アルコール発酵など発酵とは異なり、電子伝達系や酸化的リン酸化過程によってATPを合成する。.

新しい!!: ミトコンドリアと嫌気呼吸 · 続きを見る »

小胞

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) '''小胞'''、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 小胞の構造(リポソーム) 小胞(しょうほう)は、細胞内にある膜に包まれた袋状の構造で、細胞中に物質を貯蔵したり、細胞内外に物質を輸送するために用いられる。代表的なものに、液胞やリソソームがある。小胞は、脂質膜の化学的な特性上、自然に形成される構造である(ミセルを参照)。ほとんどの小胞は何かしらの特化した機能を持っており、その機能は小胞内に含まれる物質によって異なる。ただし見た目には同じ形状をしている場合もあり、小胞の内容を分析することなく見分けることが困難である場合も多い。.

新しい!!: ミトコンドリアと小胞 · 続きを見る »

小胞体

'''細胞核の概要'''(1) 核膜 (2) リボソーム (3) 核膜孔 (4) 核小体 (5) クロマチン (6) 細胞核 (7) '''小胞体''' (8) 核質 小胞体(しょうほうたい、endoplasmic reticulum)とは真核生物の細胞小器官の一つであり、一重の生体膜に囲まれた板状あるいは網状の膜系。核膜の外膜とつながっている。電子顕微鏡による観察でその存在が明確に認識された。.

新しい!!: ミトコンドリアと小胞体 · 続きを見る »

中心体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) '''中心体''' 中心体(ちゅうしんたい、centrosome or centriole)とは、動物細胞における細胞小器官の一つ。微小管形成中心(MTOC; microtubule organizing center)とも呼ばれる。なお、植物細胞においては中心体の存在が認められず、微小管形成中心は細胞内に分散する多数の極性中心として認められる。 ごく短い微小管から構成される。長さ0.4μm、9対の三連微小管が環状に配置したもの(中心小体あるいは中心子(centriole)と呼ぶ)が二個一組、相互に直角対向しL字形に配置している。 また、中心小体の周辺には明瞭ではないが、光学的には明るくみえる中心体マトリックスと呼ばれる球状の構造がみとめられる。中心体マトリックスには、γ-チューブリン環を含む中心体に特異的なタンパク質が含まれており、中心体の微小管形成中心としての機能を司る構造としては、中心小体より重要な部分と考えられている。 通常、中心体は核の近辺に配置されている。中心小体は細胞分裂に先立ってS期頃に複製され、計4つになる。細胞が分裂期に入ると、それぞれ2つの中心小体からなる中心体が細胞の両極に移動する。この際、各々の中心小体あるいは中心体は、細胞分裂の際に認められる星状体(aster)および紡錘体の極となっている。 微小管は、その-端を中心体に置き、重合の場である+端を細胞内の様々な領域に伸ばすことが多い。 微小管の重合・伸長を抑制する脱重合剤を用いて細胞を処理し、一旦微小管を消失させた後、この脱重合剤を除去すると、新しい微小管は中心体から伸長して星状体を形成した後、さらに伸長を続け、細胞全域と広がっていく。このことから、中心体が微小管形成中心として働いていることが分かる。.

新しい!!: ミトコンドリアと中心体 · 続きを見る »

乳酸

乳酸(にゅうさん、lactic acid)は、有機化合物で、ヒドロキシ酸の1種である。分子式 C3H6O3、示性式 CH3CH(OH)COOH、IUPAC置換命名法 2-ヒドロキシプロパン酸 (2-hydroxypropanoic acid) と表される。ただし、キラル中心を1つ持つため鏡像異性体が存在するので、R体かS体かの区別が必要な場合がある。乳酸の塩やエステルは ラクタート あるいは ラクテート(lactate)と呼ぶ。解糖系の生成物として現れる。.

新しい!!: ミトコンドリアと乳酸 · 続きを見る »

乳酸性閾値

乳酸性閾値(にゅうさんせいいきち、lactate threshold, LT)もしくは無酸素性作業閾値(AT)もしくは lactate inflection point(LIP)とは、乳酸が血液中に急激に貯まり始める運動強度のこと。.

新しい!!: ミトコンドリアと乳酸性閾値 · 続きを見る »

人類

人類(じんるい、humanity)とは、個々の人間や民族などの相違点を越える《類》としての人間のこと『岩波 哲学思想事典』p.858 【人類】阪上孝 執筆。この用語には、「生物種としてのヒト」という側面と、「ひとつの《類》として実現すべき共同性」という側面がある。.

新しい!!: ミトコンドリアと人類 · 続きを見る »

代謝

代謝(たいしゃ、metabolism)とは、生命の維持のために有機体が行う、外界から取り入れた無機物や有機化合物を素材として行う一連の合成や化学反応のことであり、新陳代謝の略称である生化学辞典第2版、p.776-777 【代謝】。これらの経路によって有機体はその成長と生殖を可能にし、その体系を維持している。代謝は大きく異化 (catabolism) と同化 (anabolism) の2つに区分される。異化は物質を分解することによってエネルギーを得る過程であり、例えば細胞呼吸がある。同化はエネルギーを使って物質を合成する過程であり、例えばタンパク質・核酸・多糖・脂質の合成がある。 代謝の化学反応は代謝経路によって体系づけられ、1つの化学物質は他の化学物質から酵素によって変換される。酵素は触媒として、熱力学的に不利な反応を有利に進めるため極めて重要な存在である。また、酵素は、細胞の環境もしくは他の細胞からの信号(シグナル伝達)の変化に反応することにより代謝経路の調節も行う。 有機体の代謝はその物質の栄養価の高さがどれだけか、また、毒性の高さがどれだけかを決定する。例えば、いくつかの原核生物は硫化水素を使って栄養を得ているが、この気体は動物にとっては毒であることが知られている。また、代謝速度はその有機体がどれだけの食物を必要としているかに影響を与える。.

新しい!!: ミトコンドリアと代謝 · 続きを見る »

微小管

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) '''微小管'''、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 微小管(びしょうかん、、マイクロチューブル)は、細胞中に見いだされる直径約 25 nm の管状の構造であり、主にチューブリンと呼ばれるタンパク質からなる。細胞骨格の一種。細胞分裂の際に形成される分裂装置(星状体・紡錘体・染色体をまとめてこう呼ぶ。星状体・紡錘体は中心体・微小管複合体そのものをその形態からこう呼んだ)の主体は、この微小管である。.

新しい!!: ミトコンドリアと微小管 · 続きを見る »

微胞子虫

微胞子虫(びほうしちゅう、Microsporidia)はさまざまな動物の細胞内に寄生する単細胞真核生物の一群で、これまでに1200種以上が知られている。昆虫、甲殻類、魚類、ヒトを含む哺乳類などに感染する病原体が多く含まれている。かつては粘液胞子虫(現在は多細胞動物起源とされる)とともに原生動物門胞子虫綱、あるいは極嚢胞子虫綱に入れられたが、現在では極めて特殊化した菌類だと考えられ、独立な分類群と考えられている。.

新しい!!: ミトコンドリアと微胞子虫 · 続きを見る »

後生動物

後生動物 (こうせいどうぶつ、Metazoa)は、生物の分類群の1つで、真核生物のオピストコンタに属する。海綿動物、中生動物、節足動物、脊索動物などを含む。二界説での動物界から原生動物を除いたもの、五界説で動物界とされたものにほぼ等しい。.

新しい!!: ミトコンドリアと後生動物 · 続きを見る »

心筋

心筋(しんきん)は、心臓を構成する筋肉のことをいう。 心筋は、骨格筋と同じ横紋筋であるが、骨格筋は随意筋で多核の細胞でできているのに対して、心筋は単核(稀に2核)の細胞でできており、不随意筋である。また、ミトコンドリアが非常に多く存在しており、心筋が要求するエネルギーの大部分をまかなっている。心房には血圧と血流の制御に関連する心房性ナトリウム利尿ペプチドと呼ばれるペプチドホルモンを合成、分泌する心筋細胞が存在する。心筋細胞は介在板により結ばれ、心筋線維を形成する。心筋線維は静止時には細胞外に対して-50~-90mVの膜電位を有する。骨格筋の絶対不応期は1~3msecなのに対して、心筋の絶対不応期は200msecと長い。.

新しい!!: ミトコンドリアと心筋 · 続きを見る »

ミトコンドリアのシャトル系

ミトコンドリアのシャトル系(Mitochondrial shuttle)は、ミトコンドリア内膜をまたいで還元当量を輸送するためのシステムである。細胞質における主要な還元当量であるNADHは内膜を通過できないが、内膜を通過できる他の分子を還元することはできるため、その電子が電子伝達系に入ることができる。 ヒトが持つ2つの主なシステムは、次の通りである。 ヒトでは、グリセロールリン酸シャトルは褐色脂肪組織で最初に発見された。褐色脂肪組織では、逆経路の効率が低く、そのため褐色脂肪組織の役割である熱を産み出す。赤ちゃんで最初に発見されたが、成人でも腎臓の周りや首の後ろに少量存在する。リンゴ酸-アスパラギン酸シャトルは、体のその他の部分に多く見られる。.

新しい!!: ミトコンドリアとミトコンドリアのシャトル系 · 続きを見る »

ミトコンドリア・イブ

ミトコンドリアのハプロタイプL0からL3がアフリカにのみ存在する一方その他の地域はMかNどちらかしか存在しない 現生人類の移動 ミトコンドリア・イブ(Mitochondrial Eve)とは、人類の進化に関する学説において、現生人類の最も近い共通女系祖先(the matrilineal most recent common ancestor)に対し名付けられた愛称。約16±4万年前にアフリカに生存していたと推定され、アフリカ単一起源説を支持する有力な証拠の一つである。 しばしば誤解を受けるが、彼女は「同世代で唯一、現生人類に対し子孫を残すことができた女性」ではない。母方以外の系図を辿れば、彼女以外の同世代の女性に行き着くことも可能である(後段の「よくある誤解」を参照)。人類の出アフリカの時期を求める手掛かりのうち、年代特定が比較的容易なサンプルの一つであるという以外には、彼女は人類史に特別な意味や興味を占める人物ではない。.

新しい!!: ミトコンドリアとミトコンドリア・イブ · 続きを見る »

ミトコンドリア病

ミトコンドリア病(ミトコンドリアびょう)は、細胞小器官の一つであるミトコンドリアの異常による病気である。1980年代から脚光を浴びるようになった。障害の起こる部位に因んで、ミトコンドリア脳筋症、ミトコンドリアミオパチーとも呼ばれる。.

新しい!!: ミトコンドリアとミトコンドリア病 · 続きを見る »

ミトコンドリアDNA

ミトコンドリアDNA(みとこんどりあディーエヌエー、mtDNA,mDNA)とは、細胞小器官であるミトコンドリア内にあるDNAのこと。ミトコンドリアが細胞内共生由来であるとする立場から、ミトコンドリアゲノムと呼ぶ場合もある。.

新しい!!: ミトコンドリアとミトコンドリアDNA · 続きを見る »

ミドリムシ

ミドリムシ(緑虫)は、ユーグレナ植物門ユーグレナ藻綱ユーグレナ目に属する鞭毛虫の仲間であるミドリムシ属 の総称。 の由来は、(eu 美しい + glena 眼点)。名称としてミドリムシの代わりに「ユーグレナ」を用いる場合も多い。古くはユーグレムシの名称が使われたこともある。本項目では や などを含む、典型的なミドリムシに関して記述する。 ミドリムシの名は、広義にはミドリムシ植物 (≒ 現在のユーグレナ類 )全体の総称として用いられる。鞭毛運動をする動物的性質をもちながら、同時に植物として葉緑体を持ち光合成を行うため、「単細胞生物は動物/植物の区別が難しい」という話の好例として挙げられることが多い。これはミドリムシ植物がボド類のような原生動物と緑色藻類との真核共生により成立したと考えられる生物群であるためである。それゆえミドリムシ植物には 属のように葉緑体を持たず捕食生活を行う生物群も現存する。.

新しい!!: ミトコンドリアとミドリムシ · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: ミトコンドリアとノーベル化学賞 · 続きを見る »

マイトソーム

マイトソーム(mitosome)はある種の単細胞真核生物にみられる細胞小器官である。マイトソームは1999年に発見・報告された小器官であり、その機能は未だに良く分かっていない。別のグループが同器官を「クリプトン」(crypton)とも命名しているが、この名は使われていない。 マイトソームはミトコンドリアを持たない嫌気性生物や微好気性生物からのみ見つかっている。これらの生物は通常ミトコンドリアが行う酸化的リン酸化によるエネルギー産生を行わない。マイトソームは最初にヒトの腸管内寄生虫である赤痢アメーバ()から発見され、その後微胞子虫やランブル鞭毛虫からも報告されている。 マイトソームはミトコンドリアに由来する小器官であろうと推測されている。ミトコンドリアと同様に二重膜に包まれ、構成タンパク質の多くは特定のアミノ酸配列による移行シグナルによって輸送されてくる。移行シグナルの配列はミトコンドリアのものと類似性が高く、実際にミトコンドリアのプレ配列が付加されたタンパク質がマイトソームへと輸送されることが実験的に確認されている。マイトソーム関連タンパク質のかなりの部分が、ミトコンドリアやハイドロジェノソームのものと非常に類似している ミトコンドリアと異なる点として、マイトソームは内部にゲノムを持たないことが挙げられる。マイトソームの構成タンパク質は細胞核ゲノムにコードされている。マイトソームにゲノムの存在が示唆されたこともあったが、近年の報告では否定されている。.

新しい!!: ミトコンドリアとマイトソーム · 続きを見る »

マスクメロン

マスクメロン は、麝香 のような強い芳香を持つメロンの総称である。別名はジャコウウリ。 日本では、主にアールスフェボリット(あるいはその系統の品種、後述)のことを指し、品種名ではない。 上記のように、名称の「マスク」は麝香を意味する(発音は)で、「仮面」などを指す「マスク」ではない。.

新しい!!: ミトコンドリアとマスクメロン · 続きを見る »

ハプログループF (mtDNA)

ハプログループF (mtDNA)(ハプログループF (ミトコンドリアDNA)、)とは、分子人類学で用いられる、人類のミトコンドリアDNAハプログループ(型集団)の分類のうち、ハプログループNの子系統「R9」を祖先に持ち「249d」、「6392」、「10310」などの特徴的変異をもつもので、サブクレードは、F1、F2、F3、F4などであるDavid Comas, Stephanie Plaza, R. Spencer Wells et al., "Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages," European Journal of Human Genetics (2004) 12, 495–504.

新しい!!: ミトコンドリアとハプログループF (mtDNA) · 続きを見る »

ポリン (タンパク質)

ポリン(Porin)は、βバレル構造を含む膜貫通タンパク質である。他の膜輸送タンパクとは違って、分子の受動的拡散(passive diffusion)を許すほど大きな孔(pore)を持ち、いろいろな種類の分子に特異的なイオンチャネルのような働きをする。ポリンはグラム陰性菌、ミトコンドリア、葉緑体の外膜に存在する。.

新しい!!: ミトコンドリアとポリン (タンパク質) · 続きを見る »

ポール・ボイヤー

ポール・ボイヤー(Paul Delos Boyer、1918年7月31日 - 2018年6月2日)は、アメリカ人生化学者。アデノシン三リン酸合成酵素の構造の解明に対して、1997年のノーベル化学賞を受賞した。.

新しい!!: ミトコンドリアとポール・ボイヤー · 続きを見る »

ヤヌスグリーン

ヤヌスグリーン (janus green) とは、分子生物学や生化学の試験研究で用いられる色素の一種。ミトコンドリアの染色に用いられる。フェナジン構造とアゾベンゼンの構造を持ち、分子式は C30H31N6Cl、CAS登録番号は 。酸素のある環境下では酸化されて青に、そうでなければ還元されてピンク色に発色する。.

新しい!!: ミトコンドリアとヤヌスグリーン · 続きを見る »

ユビキノン

ユビキノン(略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、動物体内で合成することができるためビタミンではない。.

新しい!!: ミトコンドリアとユビキノン · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: ミトコンドリアとラジカル (化学) · 続きを見る »

リン・マーギュリス

リン・マーギュリス(Lynn Margulis, 1938年3月5日 - 2011年11月22日)は、アメリカの生物学者。マサチューセッツ大学アマースト校地球科学部教授。日本では不正確ではあるがマーグリス及びマルグリスの表記も見られる。.

新しい!!: ミトコンドリアとリン・マーギュリス · 続きを見る »

リンゴ酸

リンゴ酸(林檎酸、リンゴさん、malic acid)とはヒドロキシ酸に分類される有機化合物の一種。オキシコハク酸ともいう。 リンゴ酸の和名はリンゴから見つかったことに由来する。示性式は HOOC-CH(OH)-CH2-COOH、分子量は 134.09。IUPAC置換命名法では 2-ヒドロキシブタン二酸 (2-hydroxybutanedioic acid) と表される。 2位に光学中心を持ち、リンゴに多く含まれる異性体は (S)-(−)-L体 である。0.1 % 水溶液の pH は 2.82。.

新しい!!: ミトコンドリアとリンゴ酸 · 続きを見る »

リンゴ酸-アスパラギン酸シャトル

リンゴ酸-アスパラギン酸シャトル(Malate-aspartate shuttle)は、真核生物における酸化的リン酸化のため、解糖系で生成した電子を半透過性のミトコンドリア内膜を通して移動させる生化学系である。この電子は、ミトコンドリアの電子伝達系に入ってATPを生成する。ミトコンドリア内膜は、電子伝達系の主要な還元剤であるNADHを通さないため、シャトル系が必要である。これを回避するために、リンゴ酸が膜を通過して還元剤を運ぶ。.

新しい!!: ミトコンドリアとリンゴ酸-アスパラギン酸シャトル · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

新しい!!: ミトコンドリアとリボソーム · 続きを見る »

リボソームRNA

リボソームRNAはリボソームを構成するRNAであり、RNAとしては生体内でもっとも大量に存在する(7~8割程度)。通常rRNAと省略して表記される。 原核生物では沈降係数に由来する命名で23Sと5Sがリボソーム大サブユニット(50Sサブユニット)に含まれる。また小サブユニット(30Sサブユニット)には16SrRNAが含まれる。クレンアーキオータ(5Sが独立している)を除き16S, 23S, 5Sの順に並んだオペロン構造を持っている。 真核生物の大サブユニット(60Sサブユニット)には一般に28Sと5.8S、5S rRNA、小サブユニット(40Sサブユニット)には18S rRNAが含まれるが、種によってその数字には若干の違いがある。 ヒトにおいてはこのうち28S、5.8S、18S RNAは一つの転写単位に由来する。これはrRNA前駆体と呼ばれる約2 kbのRNAであり、RNAポリメラーゼIによって核小体で転写される。転写されたrRNA前駆体は、snoRNAなどの様々なRNAやタンパク質の働きをうけて、不要な部分が取り除かれ、また修飾を受けてrRNAになる。一方、5S RNAはRNAポリメラーゼIIIにより転写される。 rRNAはタンパク質合成の触媒反応の活性中心を形成していると考えられている。.

新しい!!: ミトコンドリアとリボソームRNA · 続きを見る »

リケッチア

リケッチア (Rickettsia、リケッツィア、リケッチャ、リッケットシアとも表記。) は、Rickettsia属の微生物の総称。2011年現在、26種を含む。ダニ等の節足動物を媒介とし、ヒトに発疹チフスあるいは各種リケッチア症を引き起こす。ウイルスと同じように細胞外で増殖できない。偏性細胞内寄生体とも呼ばれる。 Rickettsiaという名称は、発疹チフスの研究に従事し、結果的にそれが原因で亡くなったHoward Taylor Rickettsの名に因んでいる。.

新しい!!: ミトコンドリアとリケッチア · 続きを見る »

リソソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) '''リソソーム'''、(13) 中心体 リソソーム(lysosome; ライソソーム)は、真核生物が持つ細胞小器官の一つである。リソゾーム、ライソソーム、ライソゾームまたは水解小体(すいかいしょうたい)とも呼ばれる。語源は、“lysis(分解)”+“some(〜体)”に由来する。生体膜につつまれた構造体で細胞内消化の場である。内部に加水分解酵素を持ち、エンドサイトーシスやオートファジーによって膜内に取り込まれた生体高分子はここで加水分解される。分解された物体のうち有用なものは、細胞質に吸収される。不用物はエキソサイトーシスによって細胞外に廃棄されるか、残余小体(residual body)として細胞内に留まる。単細胞生物においては、リソソームが消化器として働いている。また植物細胞では液胞がリソソームに相当する細胞内器官である。.

新しい!!: ミトコンドリアとリソソーム · 続きを見る »

トリプトファン

トリプトファン はアミノ酸の一種である。ヒトにおける9つの必須アミノ酸の内の1つ。 系統名 2-アミノ-3-(インドリル)プロピオン酸。略号はTrpまたはW。 側鎖にインドール環を持ち、芳香族アミノ酸に分類される。蛋白質構成アミノ酸である。糖原性・ケト原性の両方を持つ。多くのタンパク質中に見出されるが、含量は低い。ナイアシンの体内活性物質であるNAD(H)をはじめ、セロトニン・メラトニンといったホルモン、キヌレニン等生体色素、また植物において重要な成長ホルモンであるインドール酢酸の前駆体、インドールアルカロイド(トリプタミン類)などの前駆体として重要である。.

新しい!!: ミトコンドリアとトリプトファン · 続きを見る »

トリパノソーマ

トリパノソーマ は、トリパノソーマ科に属する原生生物で、幅広い宿主に感染し、アフリカ睡眠病をはじめとするさまざまな病気(総称してトリパノソーマ症)を引き起こす。 名はギリシャ語で、τρυπανον「錐」+ σωμα「体」という意味で、コルク抜きのような形状・動きに由来する。マクムシという和名もあるが稀にしか用いられない。.

新しい!!: ミトコンドリアとトリパノソーマ · 続きを見る »

プロテオバクテリア

プロテオバクテリア門(Proteobacteria)は真正細菌の門の一つである。大腸菌、サルモネラ、ビブリオ、ヘリコバクターなど多種多様な病原体が含まれている。また、窒素固定に関わる細菌など、自由生活性のものも多く含まれている。この分類群は、他の真性細菌の分類群と同様に基本的にはrRNA配列によって定義されている。その多様性から、ギリシャ神話で姿を変幻自在に変える神プロテウスにちなんで名付けられた。.

新しい!!: ミトコンドリアとプロテオバクテリア · 続きを見る »

パラサイト・イヴ

『パラサイト・イヴ』は、瀬名秀明のデビュー作となったホラー小説。第2回日本ホラー小説大賞受賞。.

新しい!!: ミトコンドリアとパラサイト・イヴ · 続きを見る »

ビタミンC

ビタミンC (vitamin C, VC) は、水溶性ビタミンの1種。化学的には L-アスコルビン酸をさす。生体の活動においてさまざまな局面で重要な役割を果たしている。食品に含まれるほか、ビタミンCを摂取するための補助食品もよく利用されている。WHO必須医薬品モデル・リスト収録品。 壊血病の予防・治療に用いられる。鉄分・カルシウムなどミネラルの吸収を促進する効果があるが、摂取しすぎると鉄過剰症の原因になることがある。風邪を予防することはできない。.

新しい!!: ミトコンドリアとビタミンC · 続きを見る »

ピルビン酸

ピルビン酸(ピルビンさん、Pyruvic acid)は有機化合物の一種で、示性式が CH3COCOOH と表されるカルボン酸である。IUPAC命名法では 2-オキソプロパン酸 (2-oxopropanoic acid) と表される。α-ケトプロピオン酸 (α-ketopropionic acid) あるいは焦性ブドウ酸 (pyroracemic acid) とも呼ばれる。水、エタノール、エーテルなど、さまざまな極性溶媒や無極性溶媒と任意な比率で混和する。酢酸に似た酸味臭を示す。2位のカルボニル基を還元すると乳酸となる。 生体内では解糖系による糖の酸化で生成する。 ピルビン酸デヒドロゲナーゼ複合体の作用により補酵素Aと結合するとアセチルCoAとなり、クエン酸回路や脂肪酸合成系に組み込まれる。 また、グルタミン酸からアミノ基を転移されるとアラニンになる。.

新しい!!: ミトコンドリアとピルビン酸 · 続きを見る »

ピルビン酸デヒドロゲナーゼ複合体

ピルビン酸デヒドロゲナーゼ複合体(ピルビンさんデヒドロゲナーゼふくごうたい、Pyruvate dehydrogenase complex、PDC)とは、ピルビン酸をアセチルCoAに変換(ピルビン酸脱炭酸反応と呼ばれる)する3つの酵素の複合体である。アセチルCoAはクエン酸回路に送られて細胞呼吸に使われており、この複合体は解糖系とクエン酸回路とを繋げている。また、ピルビン酸脱炭酸反応は、ピルビン酸の酸化を必要とするためピルビン酸デヒドロゲナーゼ反応としても知られる。 このマルチ酵素複合体は、(EC:1.2.4.2、2.3.1.61、1.8.1.4)と(EC:1.2.4.4)と構造的・機能的に関係がある。これらと合わせ3つを総称しKADH(α-ketoacid dehydrogenase) complexesと呼ぶことがある。.

新しい!!: ミトコンドリアとピルビン酸デヒドロゲナーゼ複合体 · 続きを見る »

ピーター・ミッチェル

ピーター・デニス・ミッチェル(Peter Dennis Mitchell, 1920年9月29日 – 1992年4月10日)はイギリスの生化学者で、ATP合成の電気化学勾配メカニズムの発見により1978年度のノーベル化学賞を受賞した。イングランドのサリー、ミッチャム(現在のマートン・ロンドン特別区)の生まれ。.

新しい!!: ミトコンドリアとピーター・ミッチェル · 続きを見る »

デヒドロアスコルビン酸

デヒドロアスコルビン酸(デヒドロアスコルビンさん、Dehydroascorbic acid、DHA)は、アスコルビン酸が酸化された化合物である。デヒドロアスコルビン酸は、グルコース輸送を介して細胞内の小胞体に積極的に輸送される。デヒドロアスコルビン酸は、小胞体に捕捉されてグルタチオンおよび他のチオールによってアスコルビン酸に還元される。それゆえL-デヒドロアスコルビン酸は、L-アスコルビン酸と同様のビタミンC化合物である。 フリーラジカルセミデヒドロアスコルビン酸(SDA)もまた、酸化型のアスコルビン酸のグループに属している。.

新しい!!: ミトコンドリアとデヒドロアスコルビン酸 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: ミトコンドリアとデオキシリボ核酸 · 続きを見る »

フマル酸

フマル酸(フマルさん、Fumaric Acid)は構造式 HOOC–CH.

新しい!!: ミトコンドリアとフマル酸 · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: ミトコンドリアとニコチンアミドアデニンジヌクレオチド · 続きを見る »

呼吸

生物における呼吸(こきゅう)は、以下の二種類に分けられる。.

新しい!!: ミトコンドリアと呼吸 · 続きを見る »

アナプレロティック反応

アナプレロティック反応(アナプレロティックはんのう、anaplerosis)あるいは補充反応は、代謝経路の中間体を生成する反応である。アナプレロシス(anaplerosis)の語句はギリシャ語のAna(再び)およびPlerotikos(満たす)に由来する。こういった反応の例はトリカルボン酸 (TCA) 回路(クレブス回路あるいはクエン酸回路とも呼ばれる)において見られる。呼吸におけるこの回路の正常な機能では、TCA中間体の濃度は一定に保たれる。しかしながら、多くの生合成反応も基質としてこれらの分子を使用する。アナプレロシスは生合成(カタプレロティック反応あるいは消費反応と呼ばれる)に抜き取られたTCA回路中間体を補充する作用である。 TCA回路は代謝のハブであり、エネルギー生産と生合成において最も重要である。したがって、ミトコンドリアにおけるTCA回路中間体の濃度を調節することは細胞にとって極めて重要である。細胞内代謝の恒常性(ホメオスタシス)を保つためには、アナプレロティックフラックス(flux: 流量)とカタプレロティックフラックスのバランスを取らなければならない。.

新しい!!: ミトコンドリアとアナプレロティック反応 · 続きを見る »

アポトーシス

アポトーシス、アポプトーシス (apoptosis) とは、多細胞生物の体を構成する細胞の死に方の一種で、個体をより良い状態に保つために積極的に引き起こされる、管理・調節された細胞の自殺すなわちプログラムされた細胞死(狭義にはその中の、カスパーゼに依存する型)のこと。ネクローシス(necrosis)の対義語として使われる事が多い。 Apoptosis の語源はギリシャ語の“”, apoptosis アポプトーシス:「apo-(離れて)」と「ptosis(下降)」に由来し、「(枯れ葉などが木から)落ちる」という意味である。英語ではと発音されるが、この語が最初に提唱された論文では2番目のpを黙字としている。.

新しい!!: ミトコンドリアとアポトーシス · 続きを見る »

アメーバ

アメーバ(amoeba, ameba, amœba)は、単細胞で基本的に鞭毛や繊毛を持たず、仮足で運動する原生生物の総称である。また仮足を持つ生物一般や細胞を指してこの言葉を使う場合もある。ギリシャ語で「変化」を意味する αμοιβη(amoibē) に由来する。 アメーバという語は意味が広いため、この項ではまず分類学的にもまとまっている典型的なアメーバについて説明し、その後で様々な「アメーバ」と呼ばれる生物について概要を述べ、最後に「アメーバ」と呼ばれる細胞について述べる。アメーバという語の一般社会での用法については最後にまとめる。.

新しい!!: ミトコンドリアとアメーバ · 続きを見る »

アーケゾア

アーケゾア は、真核生物のうちミトコンドリアを持たないグループである。トーマス・キャバリエ=スミスが、原始的な真核生物であるとして、「古い動物」を意味するアーケゾアと命名した(厳密には、以前からあったアーケゾアという言葉を転用した)。 原核生物は進化の上で、まず核を獲得し、その後、ミトコンドリアを獲得したと主張された。この仮説を「アーケゾア仮説」と呼ぶ。 現在では、分子系統学により、アーケゾアのいずれも、ミトコンドリアを持つ生物を祖先に持つ2次的にミトコンドリアを失った生物で、しかも別々の系統から進化(退化)したことがわかっている。そのためアーケゾア仮説は否定され、アーケゾアという言葉自体ほとんど使われない。 Category:原生生物 Category:否定された仮説.

新しい!!: ミトコンドリアとアーケゾア · 続きを見る »

アピコンプレックス門

アピコンプレックス門(Apicomplexa;またはアピコンプレクサ類)は原生生物界の門の1つ。アピコンプレクサ類は生活環のどこかでアピカルコンプレックス(apical complex、頂端複合構造)という構造を持つという点で特徴づけられる原生生物の大きなグループである。寄生性であり、配偶子の時期を例外として、鞭毛や仮足を持たない。.

新しい!!: ミトコンドリアとアピコンプレックス門 · 続きを見る »

アデノシン三リン酸

アデノシン三リン酸(アデノシンさんリンさん、adenosine triphosphate)とは、アデノシンのリボース(=糖)に3分子のリン酸が付き、2個の高エネルギーリン酸結合を持つヌクレオチドのこと。IUPAC名としては「アデノシン 5'-三リン酸」。一般的には、「adenosine triphosphate」の下線部のアルファベットをとり、短縮形で「ATP(エー・ティー・ピー)」と呼ばれている。.

新しい!!: ミトコンドリアとアデノシン三リン酸 · 続きを見る »

アデノシン二リン酸

アデノシン二リン酸(アデノシンにリンさん、Adenosine diphosphate, ADP と略)は、アデニン、リボース、および二つのリン酸分子からなる化学物質。リン酸は高エネルギーリン酸結合をとっており、ATP から ADP とリン酸基に分かれる際に放出されるエネルギーは生体内での主要なエネルギー源となっている。詳細は ATP の項目を参照のこと。 アデニル酸(AMP)とATPからアデニル酸キナーゼによって生成される。 ATPアーゼ(ATPase)によりATPが加水分解される場合にも生成される。 ADPは上記の化学反応のようにATPの分解やAMPのリン酸化によって生ずる。.

新しい!!: ミトコンドリアとアデノシン二リン酸 · 続きを見る »

アスコルビン酸

アスコルビン酸(アスコルビンさん、ascorbic acid)は、栄養素ビタミンC としてはたらく、ラクトン構造を持つ有機化合物の1種である。IUPAC命名法では、フランの誘導体と見なして、(R)-3,4-ジヒドロキシ-5-((S)-1,2-ジヒドロキシエチル)フラン-2(5H)-オンと表される。分子量は176.13 g/mol。光学活性化合物であり、ビタミンCとして知られるのはL体の方である。そのCAS登録番号は 。食品添加物の酸化防止剤として、広く使用される。.

新しい!!: ミトコンドリアとアスコルビン酸 · 続きを見る »

アセチルCoA

アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。テルペノイドはアセチルCoA二分子の反応によって生じるアセトアセチルCoAを原料とする。消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸#脂肪酸生合成系参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。.

新しい!!: ミトコンドリアとアセチルCoA · 続きを見る »

イントロン

イントロン(intron)は、転写はされるが最終的に機能する転写産物からスプライシング反応によって除去される塩基配列。つまり、アミノ酸配列には翻訳されない。スプライシングによって除去されず、最終的にアミノ酸配列に翻訳される部位をエキソンと呼ぶ。 イントロンは一見無駄に見えるが、選択的スプライシングや、エキソンシャッフリングを可能にし、また、mRNAを核から運び出す過程や、翻訳効率などに関わっていることがわかってきた。.

新しい!!: ミトコンドリアとイントロン · 続きを見る »

イソクエン酸

イソクエン酸(イソクエンさん、Isocitric acid)は化学式C6H8O7で示性式はHOOC-CH2-CH(COOH)-CH(OH)-COOH、分子量は192。IUPAC置換命名法では 3-carboxy-2-hydroxypentane-1,5-dioic acid。基官能命名法では 1-Hydroxypropane-1,2,3-tricarboxylic acid。CAS登録番号は320-77-4 ヒドロキシ酸のひとつでクエン酸の異性体であるのでこの名がついた。クエン酸回路を構成しており、アコニターゼによってcis-アコニット酸から生成し、イソクエン酸デヒドロゲナーゼによってα-ケトグルタル酸となる。 Category:ヒドロキシ酸 Category:生体物質.

新しい!!: ミトコンドリアとイソクエン酸 · 続きを見る »

オットー・ワールブルク

ットー・ハインリッヒ・ワールブルク(Otto Heinrich Warburg、1883年10月8日 - 1970年8月1日)はドイツの生理学者、医師。.

新しい!!: ミトコンドリアとオットー・ワールブルク · 続きを見る »

オキサロ酢酸

酢酸(オキサロさくさん、Oxaloacetic acid)は、示性式 CH2CO(COOH)2、分子量 132.072 のジカルボン酸の一種。IUPAC命名法では2-オキソブタン二酸 (2-oxobutanedioic acid) になる。CAS登録番号は 328-42-7。旧名オキサル酢酸。.

新しい!!: ミトコンドリアとオキサロ酢酸 · 続きを見る »

カルニチン

ルニチン(carnitine)は、生体の脂質代謝に関与するビタミン様物質で、アミノ酸から生合成される誘導体である。動物の体内で生合成されるため必須アミノ酸ではない田島眞、 日本調理科学会誌 Vol.37 (2004) No.1 p.104-107, 。 立体異性体のうち脂質代謝に利用されるのは L-カルニチンのみであり、エナンチオマーのD-カルニチンは活性がないとされている。日本においては、食品分野で利用されるL-カルニチン、希少疾病用医薬品であるレボカルニチン、胃薬として使用されるDL-カルニチンがある。以下は特に断らない限りL体について記述する。分子式は C7H15NO3、分子量 161.20、CAS登録番号(L体)541-15-1。.

新しい!!: ミトコンドリアとカルニチン · 続きを見る »

カスパーゼ

パーゼ(Caspase)とは、細胞にアポトーシスを起こさせるシグナル伝達経路を構成する、一群のシステインプロテアーゼである。システインプロテアーゼは活性部位にシステイン残基をもつタンパク質分解酵素であり、カスパーゼは基質となるタンパク質のアスパラギン酸残基の後ろを切断する。Caspaseという名はCysteine-ASPartic-acid-proteASEを略したものである。英語の発音は「カスペース」である。 カスパーゼは他のカスパーゼを切断し活性化するというカスケード(連鎖的増幅反応)の形で機能する。またある種のカスパーゼはサイトカイン(インターロイキン-1β)の活性化を通して免疫系の調節にも関与している。アポトーシスは正常な発生のほか、がんやアルツハイマー病などの疾病にも関係があることから、1990年代半ばに見出されて以来、治療のターゲットにもなりうるものとして注目されている。.

新しい!!: ミトコンドリアとカスパーゼ · 続きを見る »

クリステ

リステ(Cristae)は、ミトコンドリア内膜の折り畳み構造である。クリステは、ミトコンドリア内膜の特徴的なひだ構造を形作り、化学反応が起こる表面積を広げ、好気呼吸を助けている。 クリステには、ATP合成酵素や様々なシトクロム等のタンパク質が鏤められている。.

新しい!!: ミトコンドリアとクリステ · 続きを見る »

クロララクニオン藻

ララクニオン藻(Chlorarachniophytes)は海産の単細胞藻類である。糸状仮足を持つアメーバ様の体制でありながら、クロロフィルa/bを含む緑色の葉緑体を持ち、光合成を行う。名前のクロララクニオンは代表属である Chlorarachnion に由来する(chloro- '緑色の' + arachnion 'クモの巣')。.

新しい!!: ミトコンドリアとクロララクニオン藻 · 続きを見る »

クエン酸

ン酸(クエンさん、)は、示性式 C(OH)(CH2COOH)2COOH で、柑橘類などに含まれる有機化合物で、ヒドロキシ酸のひとつである。 漢字では「枸櫞酸」と記される。枸櫞とは漢名でマルブシュカン(シトロン)を指す。レモンをはじめ柑橘類に多く含まれていることからこの名がついた。柑橘類の酸味の原因はクエン酸の味に因るものが多い。また、梅干しにも多量に含まれている。.

新しい!!: ミトコンドリアとクエン酸 · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: ミトコンドリアとクエン酸回路 · 続きを見る »

グリコーゲン

リコーゲンの構造 グリコーゲン (glycogen) あるいは糖原(とうげん)とは、多数のα-D-グルコース(ブドウ糖)分子がグリコシド結合によって重合し、枝分かれの非常に多い構造になった高分子である。動物における貯蔵多糖として知られ、動物デンプンとも呼ばれる。植物デンプンに含まれるアミロペクチンよりもはるかに分岐が多く、8~12残基に一回の分岐となる。直鎖部分の長さは12~18残基、分岐の先がさらに分岐し、網目構造をとる。英語の発音から「グライコジェン」と呼ばれることもある。 グリコーゲンは肝臓と骨格筋で主に合成され、余剰のグルコースを一時的に貯蔵しておく意義がある。糖分の貯蔵手段としてはほかに、脂肪とアミノ酸という形によるものがある。 脂肪酸という形でしかエネルギーを取り出せない脂肪や、合成分解に窒素代謝の必要なアミノ酸と違い、グリコーゲンは直接ブドウ糖に分解できるという利点がある。 ただし、脂肪ほど多くのエネルギーを貯蔵する目的には向かず、食後などの一時的な血糖過剰に対応している。 肝細胞は、食後直後に肝臓の重量の8 %(大人で100-120 g)までのグリコーゲンを蓄えることができる。本稿の「分解」の節で述べられているように肝臓に蓄えられたグリコーゲンのみが他の臓器でも利用することができる。骨格筋中ではグリコーゲンは骨格筋重量の1-2 %程度の低い濃度でしか貯蔵できない。筋肉は、体重比で成人男性の42%、同女性の36%を占める。このため体格等にもよるが大人で300g前後のグリコーゲンを蓄えることができる。 グリコーゲンの合成・分解は甲状腺、膵臓、副腎がそれぞれ血糖に応じてサイロキシン、グルカゴン及びインスリン、アドレナリンなどを分泌することで調整される。 なお、肝臓で合成されたグリコーゲンと骨格筋で合成されたそれとでは分子量が数倍異なり、前者のほうが大きい。.

新しい!!: ミトコンドリアとグリコーゲン · 続きを見る »

グルコース

ルコース(glucose)は、分子式 C6H12O6を持つ単純な糖である。とも呼ばれる。グルコースは血糖として動物の血液中を循環している。糖は植物などに含まれる葉緑体において、太陽光からのエネルギーを使って水と二酸化炭素から光合成によって作られる。グルコースはのための最も重要なエネルギー源である。植物ではデンプン、動物ではグリコーゲンのようなポリマーとして貯蔵される。 グルコースは6個の炭素原子を含み、単糖の下位区分であるヘキソースに分類される。D-グルコースは16種類の立体異性体の一つである。D型異性体であるD-グルコースは、デキストロース(dextrose)とも呼ばれ、天然に広く存在するが、L-型異性体であるL-グルコースはそうではない。グルコースは乳糖や甘蔗糖、麦芽糖、セルロース、グリコーゲンなどといった炭水化物の加水分解によって得ることができる。グルコースは通常コーンスターチから商業的に製造されている。 グルコースは世界保健機関必須医薬品モデル・リストに入っている。Glucoseという名称は、甘いを意味するギリシア語γλυκός (glukós) 由来のフランス語から来ている。接尾辞の "-ose" は炭水化物を示す化学分類辞である。.

新しい!!: ミトコンドリアとグルコース · 続きを見る »

グルコーストランスポーター

ルコーストランスポーターまたはグルコース輸送体ないし糖輸送体(英語:glucose transporter、GLUTあるいはSLC2Aと略記)は、大部分の哺乳類の細胞に見出される一連の膜タンパクファミリーである。.

新しい!!: ミトコンドリアとグルコーストランスポーター · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: ミトコンドリアとゲノム · 続きを見る »

コハク酸

ハク酸(琥珀酸、コハクさん、succinic acid)は、構造式 HOOC–(CH2)2–COOH で表されるカルボン酸の一種。はじめコハクの乾留により見つかったためにこの名がついた。英名のsuccinic acidはラテン語のsuccinum(コハク)に由来する。.

新しい!!: ミトコンドリアとコハク酸 · 続きを見る »

コハク酸デヒドロゲナーゼ

ハク酸デヒドロゲナーゼ (succinate dehydrogenase, SDH)は、コハク酸をフマル酸へ酸化する酸化還元酵素である。コハク酸脱水素酵素とも。このとき同時にユビキノンなどのキノンを還元することから、コハク酸キノンレダクターゼ(succinate-quinone reductase, SQR)とも呼ばれる。クエン酸回路の8段階目の反応を担い、また呼吸鎖においては複合体II(Complex II)と呼ばれている。真核生物ではミトコンドリア内膜に、原核生物では細胞膜に固定されている酵素複合体である。。.

新しい!!: ミトコンドリアとコハク酸デヒドロゲナーゼ · 続きを見る »

ゴルジ体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) '''ゴルジ体'''、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 ゴルジ体(ゴルジたい、英語: Golgi body)は、真核生物の細胞にみられる細胞小器官の1つ。発見者のカミッロ・ゴルジ(Camillo Golgi)の名前をとってつけられた。ゴルジ装置 (Golgi apparatus)、ゴルジ複合体(Golgi complex)あるいは網状体 (dictyosome) とも言う。へん平な袋状の膜構造が重なっており、細胞外へ分泌されるタンパク質の糖鎖修飾や、リボソームを構成するタンパク質のプロセシングに機能する。.

新しい!!: ミトコンドリアとゴルジ体 · 続きを見る »

シトクロムc

トクロムc(cytochrome c, cyt c)は、ミトコンドリアの内膜に弱く結合しているヘムタンパク質の一種である。タンパク質のシトクロムcファミリーに属する。他のシトクロムと異なり可溶性(100 g/L)で、電子伝達系において不可欠な因子である。電子伝達系では複合体IIIから1電子を受け取り、複合体IVに1電子を引き渡す。酸化型をフェリシトクロムc、還元型をフェロシトクロムcと呼ぶこともある。ヒトではシトクロムcは CYCS 遺伝子にコードされている。.

新しい!!: ミトコンドリアとシトクロムc · 続きを見る »

ジョン・E・ウォーカー

ー・ジョン・アーネスト・ウォーカー(Sir John Ernest Walker、1941年1月7日 - )は、イギリス人の化学者で1997年度のノーベル化学賞受賞者である。.

新しい!!: ミトコンドリアとジョン・E・ウォーカー · 続きを見る »

スプライソソーム

プライソソーム(Spliceosome)はタンパク質とRNAの複合体で、転写されたmRNA前駆体からイントロンを取り除いて成熟RNAにする機能を持つ。この過程はPre-mRNA スプライシングと呼ばれる。 それぞれのスプライソソームは、5つの核内低分子リボ核タンパク質(snRNP)といくつかのタンパク質因子から構成されている。 スプライソソームを構成するsnRNPはU1、U2、U4、U5、U6と名づけられ、RNA-RNA間相互作用やRNA-タンパク質間相互作用に関係している。snRNPのRNA部分はウリジンに富んでいる。 mRNA前駆体はスプライソソームに認識され、再配列を起こさせる特異的な配列を持っている。これは、5'末端スプライス部位、分岐点配列(BPS)、ポリピリミジン領域、3'末端スプライス部位からなっている。スプライソソームはイントロンの除去を触媒し、エクソン同士を連結させる。 イントロンは、5'末端側にGTの配列、3'末端側にAGの配列を持つ場合が多い。3'末端側には他に様々な長さのポリピリミジンもあり、3'末端やBPSに補因子を引き寄せる働きをしている。BPSには、スプライシングの初期段階に必要になる保存されたアデノシン残基がある。.

新しい!!: ミトコンドリアとスプライソソーム · 続きを見る »

共生

共生(きょうせい、SymbiosisあるいはCommensal)とは、複数種の生物が相互関係を持ちながら同所的に生活する現象。共に生きること。 元の用字は共棲であるとする説もあるが、最新の研究では、共生は明治21年に三好学の論文で用いられていることが確認されており、共棲の用例より早い。確認されている範囲では、日本に初めてSymbiosisという概念を紹介した最初の研究者は三好学であるので、彼がこの訳を当てた可能性が高いともされる。日本では1922年に椎尾弁匡が仏教運動として共生運動を始め、共生が単なる生物学的な意味だけでなく、哲学的な意味を含む言葉になっていった。.

新しい!!: ミトコンドリアと共生 · 続きを見る »

動物

動物(どうぶつ、羅: Animalia、単数: Animal)とは、.

新しい!!: ミトコンドリアと動物 · 続きを見る »

粘菌

粘菌.

新しい!!: ミトコンドリアと粘菌 · 続きを見る »

粗面小胞体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) '''粗面小胞体'''、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 粗面小胞体(そめんしょうほうたい、rough-surfaced endoplasmic reticulum, rER)は、リボソームが付着している小胞体の総称。核膜の外膜と粗面小胞体は連続している。リボソーム中にはRNAが多く含まれるため、粗面小胞体は好塩基性に染色される。 分泌たんぱく質、膜たんぱく質、リソソーム酵素は粗面小胞体膜状の付着リボソームで合成される。膵外分泌細胞、胃底腺主細胞、形質細胞、肥満細胞、神経細胞などのタンパク質合成が盛んな細胞でよく発達する。分泌された物質はゴルジ体へ輸送される。.

新しい!!: ミトコンドリアと粗面小胞体 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: ミトコンドリアと細胞 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: ミトコンドリアと細胞小器官 · 続きを見る »

細胞内共生説

細胞内共生説(さいぼうないきょうせいせつ)とは、1967年マーギュリスが提唱した、真核生物細胞の起源を説明する仮説。ミトコンドリアや葉緑体は細胞内共生した他の細胞(それぞれ好気性細菌、藍藻に近いもの)に由来すると考える。.

新しい!!: ミトコンドリアと細胞内共生説 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: ミトコンドリアと細胞質 · 続きを見る »

細胞質基質

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) '''細胞質基質'''、(12) リソソーム、(13) 中心体 細胞質基質(さいぼうしつきしつ)とは細胞内の部分の呼称で、細胞質から細胞内小器官を除いた部分のことである。細胞質ゾル、サイトゾル, シトソール (cytosol) あるいは細胞礎質とも呼ばれる。古くは透明質、可溶性部分などと呼ばれたこともあるが、その後の分析技術の向上により、これらの部分にもさまざまな構造や機能が認められたため、この呼称の利用には問題がある。 遠心分画法で上清画分に回収される流動性の成分からなり、可溶性のタンパク質やリソソーム等が含まれている。 基本的には水を溶媒とし、酵素蛋白質をおもな分散質とし(細胞質基質は20〜30%の蛋白質を含む)、アミノ酸、脂肪酸などの各種有機酸、糖、核酸塩基、各種タンパク質を溶質あるいは低分子分散質として含む、複雑なコロイドとなっている。 細胞内部の流体として、(主に細胞骨格の働きにより)原形質流動を起こし、細胞内の各種物質の移動、細胞内小器官の配置、細胞間で伝達される信号の細胞内での転送の場となっている。 原核細胞ではほとんどあらゆる生化学反応が細胞質基質中で行われるが、真核細胞では特定の機能に特化した細胞内小器官が大規模な反応の舞台となっているため、細胞質基質はどちらかと言えば細胞の基礎的な代謝機能の場となっている。.

新しい!!: ミトコンドリアと細胞質基質 · 続きを見る »

細胞膜

動物細胞の模式図図中の皮のように見えるものが'''細胞膜'''、(1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 細胞膜(さいぼうまく、cell membrane)は、細胞の内外を隔てる生体膜。形質膜や、その英訳であるプラズマメンブレン(plasma membrane)とも呼ばれる。 細胞膜は細胞内外を単に隔てている静的な構造体ではなく、特異的なチャンネルによってイオンなどの低分子を透過させたり、受容体を介して細胞外からのシグナルを受け取る機能、細胞膜の一部を取り込んで細胞内に輸送する機能など、細胞にとって重要な機能を担っている。.

新しい!!: ミトコンドリアと細胞膜 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: ミトコンドリアと細胞核 · 続きを見る »

紅色細菌

紅色細菌(こうしょくさいきん、purple bacteria)は、光合成細菌のうち酸素を発生せず、カロテノイドの蓄積により赤色ないし褐色を呈するものの総称である。広義には非光合成性で色調も異なる細菌を多数含む類縁の細菌群全てを紅色細菌と呼び、その中で光合成能を有するものもしくは光合成器官や光合成色素を有するものだけを紅色光合成細菌として区別する場合がある。狭義の紅色細菌は、栄養的分類の観点からさらに紅色硫黄細菌と紅色非硫黄細菌とに区分され、一般的にこれらは分けて論じられる。 本項では主に狭義の紅色細菌(紅色光合成細菌)について述べる。広義の紅色細菌についてはプロテオバクテリアを、また紅色硫黄細菌については紅色硫黄細菌の項も参照のこと。 具体的な紅色細菌の例として、Rhodobacter sphaeroidesやBlastochloris viridis(旧名Rhodopseudomonas viridis)などがあげられる。.

新しい!!: ミトコンドリアと紅色細菌 · 続きを見る »

維管束植物

維管束植物(いかんそくしょくぶつ、TracheophytaまたはTracheobiota、Vascular plant)は、維管束を持つ植物のグループである。単系統群であり、分類体系によっては門とする場合もある。ウィキペディア内で採用している体系では階級なしとなっている。.

新しい!!: ミトコンドリアと維管束植物 · 続きを見る »

繊毛虫

繊毛虫(せんもうちゅう)とは、動物的単細胞生物の一群である。全身に繊毛という毛を持ち、これを使って移動する。ゾウリムシやラッパムシ、ツリガネムシ、テトラヒメナなどが含まれる。 二界説の時代には動物界原生動物門繊毛虫綱に位置づけられていたが、五界説では原生生物界の中で繊毛虫門という独立した門の扱いを受ける場合が多い。.

新しい!!: ミトコンドリアと繊毛虫 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: ミトコンドリアと真核生物 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: ミトコンドリアと真正細菌 · 続きを見る »

終止コドン

終止コドンとは、遺伝暗号を構成する64種のコドンのうち、対応するアミノ酸(とtRNA)がなく、最終産物である蛋白質の生合成を停止させるために使われているコドン。終結コドンあるいはアミノ酸を指定しないことから、ナンセンスコドンとも呼ばれる。 一般に核ゲノムから転写されるmRNA上のコードでは、UAA(オーカー)・UAG(アンバー)・UGA(オパール)の3種がある。.

新しい!!: ミトコンドリアと終止コドン · 続きを見る »

疎水性

水性、本表記は疏水性(そすいせい、形容詞:hydrophobic、名詞:hydrophobicity)とは、水に対する親和性が低い、すなわち水に溶解しにくい、あるいは水と混ざりにくい物質または分子(の一部分)の性質のことである。 疎水性物質は一般に、電気的に中性の非極性物質であり、分子内に炭化水素基をもつ物質が代表的である。脂質や非極性有機溶媒との親和性を示す「親油性」(しんゆせい、lipophilic)も同義で用いられることが多いが、疎水性物質が全て親油性であるとは限らず、シリコーンやフルオロアルキル鎖を持つ化合物などの例外もある。 対義語は「親水性」(しんすいせい、hydrophilic)である。一般的に極性の高いまたは電荷を有する化合物は親水性を示す。これの例外としては「不溶性の塩」などがあげられる。 分子内にある疎水性、親水性の部分をそれぞれ「疎水性基」、「親水性基」という。また分子内に疎水性基と親水性基の両方を持つ物質は「両親媒性」(りょうしんばいせい、amphiphilic)であるといい、界面活性剤や極性脂質が代表的である。 疎水性の高い物質は体内に蓄積しやすく、環境中でも残留しやすい傾向がある。典型的な例としては有機塩素系殺虫剤DDTやPCBなどがある。.

新しい!!: ミトコンドリアと疎水性 · 続きを見る »

生体膜

生体膜(せいたいまく)とは細胞や細胞小器官の有する、その外界との境界の膜のことで、特有の構造を持つ。厚さ7~10nm。種類は以下のようなものがある。.

新しい!!: ミトコンドリアと生体膜 · 続きを見る »

瀬名秀明

名 秀明(せな ひであき、1968年1月17日 - )は、日本のSF作家・ホラー作家。瀬名秀明事務所代表。第16代日本SF作家クラブ会長。学位は博士(薬学)で、薬剤師の免許を取得している。近年はロボット関係の著述活動に力を入れている。公式のローマ字表記はSENA Hideaki。.

新しい!!: ミトコンドリアと瀬名秀明 · 続きを見る »

発疹チフス

疹チフス(ほっしんチフス、epidemic typhus)は、Rickettsia prowazekiiの感染を原因とする細菌感染症。感染症法における四類感染症である。.

新しい!!: ミトコンドリアと発疹チフス · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

新しい!!: ミトコンドリアと発酵 · 続きを見る »

鞭毛

鞭毛(べんもう、英:flagellum)は毛状の細胞小器官で、遊泳に必要な推進力を生み出す事が主な役目である。構造的に真核生物鞭毛と真正細菌鞭毛、古細菌鞭毛とに分けられる。.

新しい!!: ミトコンドリアと鞭毛 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: ミトコンドリアと遺伝子 · 続きを見る »

菌類

菌類(きんるい)とは、一般にキノコ・カビ・酵母と呼ばれる生物の総称であり、菌界(学名:Regnum Fungi )に属する生物を指す。外部の有機物を利用する従属栄養生物であり、分解酵素を分泌して細胞外で養分を消化し、細胞表面から摂取する。 元来、「菌」とは本項で示す生物群を表す語であったが、微生物学の発展に伴い「細菌」などにも派生的に流用されるようになったため、区別の観点から真菌類(しんきんるい)、真菌(しんきん)とも呼ばれる。.

新しい!!: ミトコンドリアと菌類 · 続きを見る »

補酵素A

補酵素A(ほこうそA、コエンザイムA あるいは CoA)は、生物にとって極めて重要な補酵素(助酵素)である。パントテン酸とアデノシン二リン酸、および 2-メルカプトエチルアミンから構成されており、化学式はC21H36P3N7O16S、分子量は767.5 g/molである。 末端にあるチオール基に様々な化合物のアシル基がチオエステル結合することによってクエン酸回路やβ酸化などの代謝反応に関わる。例えばアセチル基が結合したものはアセチルCoAである。その他にも多くの補酵素Aのチオエステル化合物がある。 1945年、ピルビン酸からクエン酸回路に入る過程の中間体「活性酢酸」(アセチルCoA)としてリップマンによって発見された。この業績により、彼は1953年にノーベル賞を受賞した。なお、同年、一緒に授賞したクレブスは、1937年にクエン酸回路を完成したことで有名である。しかし、1937年当時は補酵素Aはまだ知られておらず、中間代謝の研究におけるリップマンの業績は非常に大きいといえる。.

新しい!!: ミトコンドリアと補酵素A · 続きを見る »

褐色脂肪組織

褐色脂肪組織(かっしょくしぼうそしき、英:Brown adipose tissue、BAT)または褐色脂肪は哺乳類で見つかった2つのタイプの脂肪または脂肪組織の1つである。もう1つのタイプは白色脂肪組織である。 褐色脂肪組織は、新生児や冬眠動物では特に豊富である。その主な機能は、動物や新生児が体を震わせないで体の熱を生成することである。単一の脂肪滴が含まれている白色脂肪細胞とは対照的に、褐色脂肪細胞は、鉄を含んでおり、それが茶色を呈し、多数の小さな液滴とはるかに多い数のミトコンドリアが含まれている。褐色脂肪組織はほとんどの組織よりも多くの酸素を必要とするため、褐色脂肪組織はまた、白色脂肪組織よりも多くの毛細血管が集まっている。 ノルアドレナリンが褐色脂肪細胞上のβ3受容体に結合すると、UCP1(脱共役タンパク質)が生成され、ミトコンドリアで脱共役が起こり熱が産生される。動物の冬眠時に良く見られる運動に伴わない熱産生の手段である。日本人を含めた黄色人種ではβ3受容体の遺伝子に遺伝変異が起こっていることが多く、熱を産生することが少ない反面、カロリーを節約し消費しにくいことから、この変異した遺伝子を節約遺伝子と呼ぶことがある。.

新しい!!: ミトコンドリアと褐色脂肪組織 · 続きを見る »

解糖系

解糖系 解糖系(かいとうけい、Glycolysis)とは、生体内に存在する生化学反応経路の名称であり、グルコースをピルビン酸などの有機酸に分解(異化)し、グルコースに含まれる高い結合エネルギーを生物が使いやすい形に変換していくための代謝過程である。ほとんど全ての生物が解糖系を持っており、もっとも原始的な代謝系とされている。嫌気状態(けんきじょうたい、無酸素状態のこと)でも起こりうる代謝系の代表的なものである一方で、得られる還元力やピルビン酸が電子伝達系やクエン酸回路に受け渡されることで好気呼吸の一部としても機能する。.

新しい!!: ミトコンドリアと解糖系 · 続きを見る »

骨格筋

格筋(こっかくきん、skeletal muscle)は、動物の筋肉の一分類であり、骨格を動かす筋肉を指す。ここではヒトの骨格筋について記す。 骨格筋は組織学的には横紋筋であり、内臓筋が平滑筋であるのと対照をなしている。ただし浅頭筋などにみられる皮筋や、舌や咽頭、横隔膜のような内臓筋の一部も骨格を支えているわけではないが、骨格筋組織である横紋筋である。.

新しい!!: ミトコンドリアと骨格筋 · 続きを見る »

転写因子

転写因子(てんしゃいんし)はDNAに特異的に結合するタンパク質の一群である。DNA上のプロモーターやエンハンサーといった転写を制御する領域に結合し、DNAの遺伝情報をRNAに転写する過程を促進、あるいは逆に抑制する。転写因子はこの機能を単独で、または他のタンパク質と複合体を形成することによって実行する。ヒトのゲノム上には、転写因子をコードする遺伝子がおよそ1,800前後存在するとの推定がなされている。.

新しい!!: ミトコンドリアと転写因子 · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

新しい!!: ミトコンドリアと転移RNA · 続きを見る »

能動輸送

Na+/K+ ATPアーゼの模式図。Na+ を細胞外へ、K+ を細胞内へそれぞれくみ出している 能動輸送(のうどうゆそう)とは、細胞がアデノシン三リン酸 (ATP) の力を直接あるいは間接的に利用して物質を濃度勾配に逆らって輸送する作用である。.

新しい!!: ミトコンドリアと能動輸送 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: ミトコンドリアと葉緑体 · 続きを見る »

脱共役タンパク質

脱共役タンパク質(英:Uncoupling protein)は、酸化的リン酸化のエネルギーを生成する前に、膜間のプロトン勾配を浪費することができるミトコンドリアの内膜のタンパク質である。脱共役タンパク質は、Uncoupling proteinの頭文字を取ってUCPと略されることが多い。 哺乳動物では5つのタイプが知られている。.

新しい!!: ミトコンドリアと脱共役タンパク質 · 続きを見る »

脱炭酸

脱炭酸(だつたんさん、Decarboxylation)は有機反応の形式のひとつで、カルボキシル基 (−COOH) を持つ化合物から二酸化炭素 (CO2) が抜け落ちる反応を指す。.

新しい!!: ミトコンドリアと脱炭酸 · 続きを見る »

脂肪酸

脂肪酸(しぼうさん、Fatty acid)とは、長鎖炭化水素の1価のカルボン酸である。一般的に、炭素数2-4個のものを短鎖脂肪酸(低級脂肪酸)、5-12個のものを中鎖脂肪酸、12個以上のものを長鎖脂肪酸(高級脂肪酸)と呼ぶ。炭素数の区切りは諸説がある。脂肪酸は、一般式 CnHmCOOH で表せる。脂肪酸はグリセリンをエステル化して油脂を構成する。脂質の構成成分として利用される。 広義には油脂や蝋、脂質などの構成成分である有機酸を指すが、狭義には単に鎖状のモノカルボン酸を示す場合が多い。炭素数や二重結合数によって様々な呼称があり、鎖状のみならず分枝鎖を含む脂肪酸も見つかっている。また環状構造を持つ脂肪酸も見つかってきている。.

新しい!!: ミトコンドリアと脂肪酸 · 続きを見る »

膜(まく)とは、面積に対して厚みが無視できるほど薄いような物を指すのに用いられる呼称。一般的には、柔らかくひらひらしているようなものを指すことが多く、硬くて特定の形状を持ったようなものに対しては用いられない場合が多い。また、何らかの物体の表面に一様に薄く付着した状態を指す場合もある。メンブレン (membrane) とも。.

新しい!!: ミトコンドリアと膜 · 続きを見る »

膜電位

中脳黒質緻密部から得た神経細胞にて、電流固定法(カレントクランプ法)によって観察された、膜電位の変動。脱分極刺激を与えられた神経細胞が8本の活動電位を発生していることが観察される。膜電位(まくでんい、membrane potential)は細胞の内外に存在する電位の差のこと。すべての細胞は細胞膜をはさんで細胞の中と外とでイオンの組成が異なっており、この電荷を持つイオンの分布の差が、電位の差をもたらす。通常、細胞内は細胞外に対して負(陰性)の電位にある。 神経細胞や筋細胞は、膜電位を素早く、動的に変化させる事により、生体の活動に大きく貢献している。そのため、膜電位とはこれらの細胞の専売特許であるかのように誤解される事も多い。しかし現実には、全ての細胞において膜内外のイオン組成は異なっており、膜電位は存在する。たとえばゾウリムシの繊毛の打つ方向の制御は膜電位の変化によって制御されている。また植物細胞において有名な例としては、オジギソウの小葉が触れる事により閉じるのも、オジギソウの細胞の膜電位の変化によるものである事が知られている。このように、膜電位(とその変化)は、単細胞生物や植物細胞にさえ存在する、生物共通の基本原理である。.

新しい!!: ミトコンドリアと膜電位 · 続きを見る »

酸化ストレス

酸化ストレス(さんかストレス、Oxidative stress)とは活性酸素が産生され障害作用を発現する生体作用と、生体システムが直接活性酸素を解毒したり、生じた障害を修復する生体作用との間で均衡が崩れた状態のことである。生体組織の通常の酸化還元状態が乱されると、過酸化物やフリーラジカルが産生され、タンパク質、脂質そしてDNAが障害されることで、さまざまな細胞内器官が障害を受ける。 ヒトの場合、酸化ストレスは様々な疾患を引き起こす。たとえば、アテローム動脈硬化症、パーキンソン病、狭心症、心筋梗塞、アルツハイマー病、統合失調症、双極性障害、脆弱X症候群、慢性疲労症候群などに酸化ストレスが関与している。.

新しい!!: ミトコンドリアと酸化ストレス · 続きを見る »

酸化的リン酸化

酸化的リン酸化(さんかてきリンさんか、oxidative phosphorylation)とは、電子伝達系に共役して起こる一連のリン酸化(ATP合成)反応を指す。細胞内で起こる呼吸に関連した現象で、高エネルギー化合物のATPを産生する回路の一つ。好気性生物における、エネルギーを産生するための代謝の頂点といわれ、糖質、脂質、アミノ酸などの代謝がこの反応に収束する。 反応の概要は、NADHやFADHといった補酵素の酸化と、それによる酸素分子(O2)の水分子(H2O)への還元である。反応式は であり、ATPシンターゼによって触媒される。ミトコンドリアの内膜とマトリックスに生じた水素イオンの濃度勾配のエネルギーを使って、ATP合成酵素によってADPをリン酸化してATPができる。 真核細胞内のミトコンドリア内膜の他に原核細胞の形質膜にも見られる反応でもある。ミッチェルの提唱した化学浸透圧説での反応機構が最も有力で、次に仮説されたように、電子伝達系によって膜の内外にプロトンの電気化学ポテンシャル差が形成され、これを利用してATP合成酵素(F0F1)が駆動し直接ATPを合成するとされる。脱共役剤は電子伝達系の反応とATP合成の反応の共役を阻害するもので、これを添加することにより電子伝達系が行われても酸化的リン酸化はおこらない。.

新しい!!: ミトコンドリアと酸化的リン酸化 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: ミトコンドリアと酵素 · 続きを見る »

電子伝達系

真核生物では、ミトコンドリアの電子伝達鎖は酸化的リン酸化の場となる。クエン酸回路で作られたNADHとコハク酸は酸化され、ATP合成酵素にエネルギーを与える。 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。.

新しい!!: ミトコンドリアと電子伝達系 · 続きを見る »

電気化学ポテンシャル

電気化学ポテンシャル(でんきかがくポテンシャル、electrochemical potential)は、電荷を持つ粒子(イオンや電子など)の化学ポテンシャルのことである。電荷を持たない粒子の化学ポテンシャルと比べて、電気化学ポテンシャルには電位の寄与が付け加わっている。電気化学ポテンシャルは、その荷電粒子が存在する相の電位によって変化する。 エドワード・グッゲンハイムによって、特に電位を考慮しない通常の化学ポテンシャルと区別するために導入された。.

新しい!!: ミトコンドリアと電気化学ポテンシャル · 続きを見る »

進化

生物は共通祖先から進化し、多様化してきた。 進化(しんか、evolutio、evolution)は、生物の形質が世代を経る中で変化していく現象のことであるRidley(2004) p.4Futuyma(2005) p.2。.

新しい!!: ミトコンドリアと進化 · 続きを見る »

陸上植物

上植物(りくじょうしょくぶつ)とは陸上に上がった緑色植物の一群。コケ植物、シダ植物、種子植物をさす。これは最も狭義の(リン・マーギュリスの定義による)植物と同義である。 最初の陸上植物が出現したのは、約4億5000万年前のオルドビス紀である。 陸上植物の定義は系統的なものである。したがって、藻類にも陸生のものがあるが、そういうものはこれに含めず、逆に陸生のものから再び水棲に戻ったと考えられる水草は含まれる。.

新しい!!: ミトコンドリアと陸上植物 · 続きを見る »

NADH:ユビキノン還元酵素 (水素イオン輸送型)

NADH:ユビキノン還元酵素 (水素イオン輸送型) (NADH:ubiquinone reductase (H+-translocating)) は、NADHからユビキノン(CoQ)へ電子2つを転移させる酸化還元酵素であり、その際に生体膜の片側から反対側へと水素イオンを輸送する酵素である。ミトコンドリアの内膜や原核生物の細胞膜に位置し、プロトン濃度勾配を形成することでATP合成や膜電位の維持に寄与する。多数のペプチドから構成されるタンパク質複合体であり、酸化的リン酸化を行う呼吸鎖の“入り口酵素”の1つであることから、複合体Iとも呼ばれる。習慣的にNADH脱水素酵素(NADH dehydrogenase)と呼ばれることが多い。.

新しい!!: ミトコンドリアとNADH:ユビキノン還元酵素 (水素イオン輸送型) · 続きを見る »

P53遺伝子

p53遺伝子(ピー53いでんし)とは、一つ一つの細胞内でDNA修復や細胞増殖停止、アポトーシスなどの細胞増殖サイクルの抑制を制御する機能を持ち、細胞ががん化したときアポトーシスを起こさせるとされる。この遺伝子による機能が不全となるとがんが起こると考えられている、いわゆる癌抑制遺伝子の一つ。 p53のpはタンパク質(protein)、53は分子量53,000を意味し、その遺伝子産物であるp53タンパク質(以下単にp53)は393個のアミノ酸から構成されている。この遺伝子は進化的に保存されており、昆虫や軟体動物にも存在している。ただしそれらのアミノ酸一次配列はかなり多様化している。またパラログとしてp63やp73もある。RB遺伝子とともによく知られている。 細胞が、がん化するためには複数の癌遺伝子と癌抑制遺伝子の変化が必要らしいことが分かっているが、p53遺伝子は悪性腫瘍(癌)において最も高頻度に異常が認められている。p53は、細胞の恒常性の維持やアポトーシス誘導といった重要な役割を持つことから「ゲノムの守護者 (The Guardian of the genome)」とも表現されるが、染色体構造が変化する機構と、それらの細胞内での働き、そしてそれらが生物にとってどのように大切なのかについてはよくわかっていない。.

新しい!!: ミトコンドリアとP53遺伝子 · 続きを見る »

植物

植物(しょくぶつ、plantae)とは、生物区分のひとつ。以下に見るように多義的である。.

新しい!!: ミトコンドリアと植物 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: ミトコンドリアと水素イオン · 続きを見る »

活性酸素

活性酸素(かっせいさんそ、Reactive Oxygen Species、ROS)は、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称である吉川敏一,河野雅弘,野原一子『活性酸素・フリーラジカルのすべて』(丸善 2000年)p.13。一般的にスーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされる。活性酸素は、酸素分子が不対電子を捕獲することによってスーパーオキシド、ヒドロキシルラジカル、過酸化水素、という順に生成する。スーパーオキシドは酸素分子から生成される最初の還元体であり、他の活性酸素の前駆体であり、生体にとって重要な役割を持つ一酸化窒素と反応してその作用を消滅させる。活性酸素の中でもヒドロキシルラジカルはきわめて反応性が高いラジカルであり、活性酸素による多くの生体損傷はヒドロキシルラジカルによるものとされている吉川 1997 p.10。過酸化水素の反応性はそれほど高くなく、生体温度では安定しているが金属イオンや光により容易に分解してヒドロキシルラジカルを生成する吉川 1997 p.9。活性酸素は1 日に細胞あたり約10 億個発生し、これに対して生体の活性酸素消去能力(抗酸化機能)が働くものの活性酸素は細胞内のDNAを損傷し,平常の生活でもDNA 損傷の数は細胞あたり一日数万から数10 万個になるがこのDNA 損傷はすぐに修復される(DNA修復)。.

新しい!!: ミトコンドリアと活性酸素 · 続きを見る »

液胞

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) '''液胞'''、(11) 細胞質基質、(12) リソソーム、(13) 中心体 液胞(えきほう、vacuole)は、生物の細胞中にある構造のひとつである。 電子顕微鏡で観察したときのみ、動物細胞内にもみられる。主な役割として、ブドウ糖のような代謝産物の貯蔵、無機塩類のようなイオンを用いた浸透圧の調節・リゾチームを初めとした分解酵素が入っており不用物の細胞内消化、不用物の貯蔵がある。ちなみに、不用物の貯蔵についてであるが、秋頃の紅葉が赤や黄色をしているのは、液胞内に色素が不用物として詰め込まれているからである。 液胞は、細胞内にある液胞膜と呼ばれる膜につつまれた構造であり、その内容物を細胞液と呼ぶ。若い細胞では小さいが、細胞の成長につれて次第に大きくなる。これは、成長する過程で排出された老廃物をため込むためである。良く育った細胞では、多くの場合、細胞の中央の大きな部分を液胞が占める。植物細胞を見ると、往々にして葉緑体が細胞の表面に張り付いたように並んでいるのは、内部を液胞が占めているためでもある。 蜜柑などの酸味や花の色は、この液胞中にある色素(アントシアンなど)に由来している。 Category:植物解剖学 Category:細胞解剖学 Category:細胞小器官.

新しい!!: ミトコンドリアと液胞 · 続きを見る »

滑面小胞体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) '''滑面小胞体'''、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 滑面小胞体(かつめんしょうほうたい、smooth-surfaced endoplasmic reticulum, sER)は、リボソームが付着していない小胞体の総称。通常細管上の網目構造をとる。粗面小胞体とゴルジ複合体シス網との移行領域、粗面小胞体との連続部位に存在する。トリグリセリド、コレステロール、ステロイドホルモンなど脂質成分の合成やCa2+の貯蔵などを行う。ステロイド産生細胞、肝細胞、骨格筋や心筋、胃底腺壁細胞、精巣上体の上皮細胞で多く存在する。.

新しい!!: ミトコンドリアと滑面小胞体 · 続きを見る »

悪性腫瘍

悪性腫瘍(あくせいしゅよう、malignant tumor)は、遺伝子変異によって自律的で制御されない増殖を行うようになった細胞集団(腫瘍)のなかで周囲の組織に浸潤し、または転移を起こす腫瘍である。悪性腫瘍のほとんどは無治療のままだと全身に転移して患者を死に至らしめる大西『スタンダード病理学』第3版、pp.139-141Geoffrey M.Cooper『クーパー細胞生物学』pp.593-595とされる。 一般に癌(ガン、がん、cancer)、悪性新生物(あくせいしんせいぶつ、malignant neoplasm)とも呼ばれる。 「がん」という語は「悪性腫瘍」と同義として用いられることが多く、本稿もそれに倣い「悪性腫瘍」と「がん」とを明確に区別する必要が無い箇所は、同一語として用いている。.

新しい!!: ミトコンドリアと悪性腫瘍 · 続きを見る »

ここにリダイレクトされます:

糸粒体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »