ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

フレアーホモロジーとモース理論

ショートカット: 違い類似点ジャカード類似性係数参考文献

フレアーホモロジーとモース理論の違い

フレアーホモロジー vs. モース理論

数学において、フレアーホモロジー(Floer homology)は、シンプレクティック幾何学や低次元トポロジーの研究に使用される有用なツールである。フレアーホモロジーは、有限次元のモース理論の無限次元の類似として発生した高級な不変量である。アンドレアス・フレアー(Andreas Floer)は、現在はハミルトニアンフレアーホモロジーと呼ばれているフレアーホモロジーの最初のバージョンを導入し、シンプレクティック幾何学のアーノルド予想の証明に使った。フレアーは、これと密接に関連するシンプレクティック多様体のラグランジアン部分多様体の理論を開発した。フレアーは、また、シンプレクティック多様体のラグランジアン部分多様体に密接に関連する理論も開発した。フレアーが第三番目に構成したことは、ヤン・ミルズ汎函数を使い、ホモロジー群を閉 3次元多様体へ関連付けた。これらの理論とそれの適用は、3次元や 4次元トポロジーと同様に、シンプレクティック多様体や接触多様体の現在の研究で、基本的な役割を果たしている。 フレアーホモロジーは、無限次元多様体とその上の実数値函数をある興味深い対象へ結び付けることにより定義される。例えば、シンプレクティック幾何学のバージョンでは、フレアーホモロジーは、シンプレクティック作用汎函数をシンプレクティック多様体の自由ループ空間へ結び付ける。、3次元多様体の((instanton))バージョンでは、3次元多様体上のSU(2)-接続の空間へ結び付ける。おまかに言うと、フレアーホモロジーは、無限次元多様体の上の自然な函数から計算されるモースホモロジーである。この自然な函数は、シンプレクティックな場合は、シンプレクティック作用を持つシンプレクティック多様体の自由ループ空間であり、3次元多様体の場合は、チャーン-サイモンズ汎函数を持つ 3次元多様体上の SU(2)-接続の空間である。大まかには、フレアーホモロジーは、無限次元多様体上の函数のモースホモロジーである。フレアーチェーン複体は、函数の臨界点(critical point)(もしくは、臨界点のある集まりでもよい)で張られるアーベル群から構成される。チェーン複体の微分は、臨界点と臨界点と(従って、臨界点の集まり)を結ぶ函数の勾配の力線の数を数えることにより定義される。このベクトル空間の線型な自己準同型は、2つの臨界点を結ぶ函数の勾配の力線を数えることで定義される。フレアーホモロジーは、このチェーン複体のホモロジーである。 フレアーのアイデアをうまく適用できる状況では、勾配の力線の方程式が、幾何学的解析的に扱いやすい典型的な方程式である。シンプレクティックフレアーホモロジーに対し、ループ空間の中の経路の勾配の力線の方程式は、注目しているシンプレクティック多様体への円筒形(cylinder)(ループの経路の全空間)からの写像のコーシー・リーマンの方程式(の摂動バージョン)であり、解は(pseudoholomorphic curves)として知られている。従って、(Gromov compactness theorem)は、微分が well-defined で、二乗が 0 となるので、フレアーホモロジーを定義することができることを示した。インスタントンフレアーホモロジーに対し、勾配の力線の方程式はまさに、実直線と交差する 3次元多様体上のヤン・ミルズ方程式である。. 微分トポロジーにおいて、モース理論(モースりろん、Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。 (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のやを見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) のの証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。.

フレアーホモロジーとモース理論間の類似点

フレアーホモロジーとモース理論は(ユニオンペディアに)共通で5ものを持っています: ホモロジー (数学)ベッチ数オイラー標数勾配 (ベクトル解析)臨界点 (数学)

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

フレアーホモロジーとホモロジー (数学) · ホモロジー (数学)とモース理論 · 続きを見る »

ベッチ数

代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

フレアーホモロジーとベッチ数 · ベッチ数とモース理論 · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

オイラー標数とフレアーホモロジー · オイラー標数とモース理論 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

フレアーホモロジーと勾配 (ベクトル解析) · モース理論と勾配 (ベクトル解析) · 続きを見る »

臨界点 (数学)

数学において,あるいはの可微分関数の臨界点(りんかいてん,critical point)あるいは(ていりゅうてん,stationary point)とは,微分が 0 あるいは未定義となる定義域内の任意の値である.に対して,臨界点はすべての偏微分が 0 になるような定義域内の値である.関数の臨界点における値は臨界値(りんかいち,critical value)である. この概念の興味は,関数が極値をとる点は臨界点であるという事実にある. この定義は と の間の可微分写像に拡張し,臨界点はこの場合ヤコビ行列の階数が最大でない点である.さらに,可微分多様体の間の可微分写像にも同様に拡張される.この場合,臨界点は とも呼ばれる. 特に, が陰方程式 で定義される平面曲線のとき, 軸に平行な 軸への射影の臨界点は の接線が 軸に平行な点,つまり,\frac(x,y).

フレアーホモロジーと臨界点 (数学) · モース理論と臨界点 (数学) · 続きを見る »

上記のリストは以下の質問に答えます

フレアーホモロジーとモース理論の間の比較

モース理論が41を有しているフレアーホモロジーは、69の関係を有しています。 彼らは一般的な5で持っているように、ジャカード指数は4.55%です = 5 / (69 + 41)。

参考文献

この記事では、フレアーホモロジーとモース理論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »