ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

スピン角運動量とパウリの排他原理

ショートカット: 違い類似点ジャカード類似性係数参考文献

スピン角運動量とパウリの排他原理の違い

スピン角運動量 vs. パウリの排他原理

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、. パウリの排他原理(パウリのはいたげんり、Pauli exclusion principle)とは、2 つ以上のフェルミ粒子は同一の量子状態を占めることはできない、というものであり、1925年にヴォルフガング・パウリが提出したフェルミ粒子に関する仮定であるW.

スピン角運動量とパウリの排他原理間の類似点

スピン角運動量とパウリの排他原理は(ユニオンペディアに)共通で12ものを持っています: 原子核ヴォルフガング・パウリボース粒子フェルミ粒子ジョージ・ウーレンベックスピノールサミュエル・ゴーズミット規格化角運動量軌道角運動量電子波動関数

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

スピン角運動量と原子核 · パウリの排他原理と原子核 · 続きを見る »

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

スピン角運動量とヴォルフガング・パウリ · パウリの排他原理とヴォルフガング・パウリ · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

スピン角運動量とボース粒子 · パウリの排他原理とボース粒子 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

スピン角運動量とフェルミ粒子 · パウリの排他原理とフェルミ粒子 · 続きを見る »

ジョージ・ウーレンベック

ーズミット。1928年頃の写真。 ジョージ・ウーレンベック(George Eugene Uhlenbeck、1900年12月6日 - 1988年10月31日)はアメリカ合衆国に移住したオランダの物理学者である。電子のスピンの発見者とされる。.

ジョージ・ウーレンベックとスピン角運動量 · ジョージ・ウーレンベックとパウリの排他原理 · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

スピノールとスピン角運動量 · スピノールとパウリの排他原理 · 続きを見る »

サミュエル・ゴーズミット

ミュエル・ゴーズミット(ハウトスミット)(Samuel Abraham Goudsmit、1902年7月11日 - 1978年12月4日)は、米国の物理学者。 1925年にジョージ・ウーレンベックとともに電子のスピンを発見したことが有名である。.

サミュエル・ゴーズミットとスピン角運動量 · サミュエル・ゴーズミットとパウリの排他原理 · 続きを見る »

規格化

規格化 (normalization) ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることが規格化(正規化とも言う)である。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r.

スピン角運動量と規格化 · パウリの排他原理と規格化 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

スピン角運動量と角運動量 · パウリの排他原理と角運動量 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

スピン角運動量と軌道角運動量 · パウリの排他原理と軌道角運動量 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

スピン角運動量と電子 · パウリの排他原理と電子 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

スピン角運動量と波動関数 · パウリの排他原理と波動関数 · 続きを見る »

上記のリストは以下の質問に答えます

スピン角運動量とパウリの排他原理の間の比較

パウリの排他原理が34を有しているスピン角運動量は、85の関係を有しています。 彼らは一般的な12で持っているように、ジャカード指数は10.08%です = 12 / (85 + 34)。

参考文献

この記事では、スピン角運動量とパウリの排他原理との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »