ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ナノテクノロジーと物理学

ショートカット: 違い類似点ジャカード類似性係数参考文献

ナノテクノロジーと物理学の違い

ナノテクノロジー vs. 物理学

ナノテクノロジー (nanotechnology) は、物質をナノメートル (nm, 1 nm. 物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

ナノテクノロジーと物理学間の類似点

ナノテクノロジーと物理学は(ユニオンペディアに)共通で15ものを持っています: 原子半導体地球ノーベル物理学賞リチャード・P・ファインマン分子エネルギー準位スピントロニクス統計力学物質重力量子量子力学量子ドット電子

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

ナノテクノロジーと原子 · 原子と物理学 · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

ナノテクノロジーと半導体 · 半導体と物理学 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

ナノテクノロジーと地球 · 地球と物理学 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

ナノテクノロジーとノーベル物理学賞 · ノーベル物理学賞と物理学 · 続きを見る »

リチャード・P・ファインマン

リチャード・フィリップス・ファインマン(Richard Phillips Feynman, 1918年5月11日 - 1988年2月15日)は、アメリカ合衆国出身の物理学者である。.

ナノテクノロジーとリチャード・P・ファインマン · リチャード・P・ファインマンと物理学 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

ナノテクノロジーと分子 · 分子と物理学 · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

エネルギー準位とナノテクノロジー · エネルギー準位と物理学 · 続きを見る »

スピントロニクス

ピントロニクス(spintronics)とは、固体中の電子が持つ電荷とスピンの両方を工学的に利用、応用する分野のこと。 スピンとエレクトロニクス(電子工学)から生まれた造語である。マグネットエレクトロニクス(magnetoelectronics)とも呼ばれるが、スピントロニクスの呼称の方が一般的である。 これまでのエレクトロニクスではほとんどの場合電荷の自由度のみが利用されてきたが、この分野においてはそれだけでなくスピンの自由度も利用しこれまでのエレクトロニクスでは実現できなかった機能や性能を持つデバイスが実現されている。この分野における代表的な例としては1988年に発見された巨大磁気抵抗効果があり、現在ハードディスクドライブのヘッドに使われている。.

スピントロニクスとナノテクノロジー · スピントロニクスと物理学 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

ナノテクノロジーと統計力学 · 物理学と統計力学 · 続きを見る »

物質

物質(ぶっしつ)は、.

ナノテクノロジーと物質 · 物理学と物質 · 続きを見る »

重力

重力(じゅうりょく)とは、.

ナノテクノロジーと重力 · 物理学と重力 · 続きを見る »

量子

量子(りょうし、quantum)は、量子論・量子力学などで顕れてくる、物理量の最小単位である。古典論では物理量は実数で表される連続量だが、量子論では、「量子」と呼ばれるような性質を持った粒子である基本粒子の素粒子に由来するものとして物理量は扱われる。そのため、たとえば電気量は電気素量の整数倍の値しかとらないものとなる。量子には、波のようにもふるまうこともあれば粒子のようにふるまうこともあるという、直感では一見不思議に思われるような性質(「粒子と波動の二重性」)がある(どちらが「本質」か、その「解釈」は、といったような問いは普通は無意味である)。.

ナノテクノロジーと量子 · 物理学と量子 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

ナノテクノロジーと量子力学 · 物理学と量子力学 · 続きを見る »

量子ドット

量子ドット(りょうしどっと、Quantum dot (QD)、古くは量子箱)とは、3次元全ての方向から移動方向が制限された電子の状態のことである。.

ナノテクノロジーと量子ドット · 物理学と量子ドット · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

ナノテクノロジーと電子 · 物理学と電子 · 続きを見る »

上記のリストは以下の質問に答えます

ナノテクノロジーと物理学の間の比較

物理学が347を有しているナノテクノロジーは、130の関係を有しています。 彼らは一般的な15で持っているように、ジャカード指数は3.14%です = 15 / (130 + 347)。

参考文献

この記事では、ナノテクノロジーと物理学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »