ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

テイラー展開

索引 テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

43 関係: 収束半径収束級数双曲線関数多項式多重指数丸善雄松堂三角関数二項定理二項係数微分微分作用素区間 (数学)ランベルトのW関数ローラン級数ブルーバックスブルック・テイラーテイラーの定理ベルヌーイ数ベクトル解析アインシュタインの縮約記法オイラー数コリン・マクローリンジェームス・グレゴリー冪級数円板等比数列総和階乗領域 (解析学)複素平面解析関数講談社関数 (数学)自然対数極限正則関数滑らかな関数漸近展開指数関数数学数列の極限整関数0の0乗

収束半径

収束半径(しゅうそくはんけい、radius of convergence) とは、冪級数が収束する定義域を与える非負量(実数あるいは∞)である。 次の冪級数を考える。 ただし、中心 a や係数 cn は複素数(特に実数)とする。次の条件が成立するとき、r をこの級数の収束半径という。 であるとき、級数は収束し、 であるとき、級数は発散する。 もし、級数が全ての複素数 z に関して収束するならば、収束半径は ∞ となる。.

新しい!!: テイラー展開と収束半径 · 続きを見る »

収束級数

数学において、級数が収束(しゅうそく、converge)あるいは収斂(しゅうれん)するとは、部分和の成す数列が収束することをいう。このとき、与えられた級数は「(有限な)和を持つ」とか「和が有限確定である」などともいい、収束する級数のことを短く、収束級数 (convergent series) などともよぶ。 ここで、級数とは数列の項の総和のことであり、与えられた数列 (a1, a2,..., an,...) の第 n-部分和とは最初の n-項の有限和 のことであった。.

新しい!!: テイラー展開と収束級数 · 続きを見る »

双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

新しい!!: テイラー展開と双曲線関数 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: テイラー展開と多項式 · 続きを見る »

多重指数

数学において多重指数記法(たじゅうしすうきほう、multi-index notation; 多重添字記法)は、添字記法を順序組を用いて多重化(多変数に一般化)する表記法であり、多変数微分積分学、偏微分方程式論、シュヴァルツ超関数論などの分野において、主に整数冪の冪指数などの添字を多重化した多重指数、多重添字を用いて様々な式の表記を簡潔にする。.

新しい!!: テイラー展開と多重指数 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: テイラー展開と丸善雄松堂 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: テイラー展開と三角関数 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: テイラー展開と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: テイラー展開と二項係数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: テイラー展開と微分 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: テイラー展開と微分作用素 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: テイラー展開と区間 (数学) · 続きを見る »

ランベルトのW関数

数学におけるランベルト W 函数(ランベルトWかんすう、Lambert W function)あるいはオメガ函数 (ω function), 対数積(product logarithm; 乗積対数)は、函数 の逆関係の分枝として得られる函数 の総称である。ここに は指数函数で は任意の複素数とする。すなわち は を満たす。 上記の方程式で と置きかえれば、任意の複素数 に対する 函数(一般には 関係)の定義方程式 を得る。 函数 は単射ではないから、関係 は( を除いて)多価である。仮に実数値の に注意を制限するとすれば、複素変数 は実変数 に取り換えられ、関係の定義域は区間 に限られ、また開区間 上で二価の函数になる。さらに制約条件として を追加すれば一価函数 が定義されて、 および を得る。それと同時に、下側の枝は であって、 と書かれる。これは から まで単調減少する。 ランベルト 関係は初等函数では表すことができない。ランベルト は組合せ論において有用で、例えば木の数え上げに用いられる。指数函数を含む様々な方程式(例えばプランク分布、ボーズ–アインシュタイン分布、フェルミ–ディラック分布などの最大値)を解くのに用いられ、また のような の解としても生じる。生化学において、また特に酵素動力学において、ミカエリス–メンテン動力学の経時動力学解析に対する閉じた形の解はランベルト 函数によって記述される。 W の絶対値で決定している。.

新しい!!: テイラー展開とランベルトのW関数 · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: テイラー展開とローラン級数 · 続きを見る »

ブルーバックス

ブルーバックスは、講談社が刊行している新書で、自然科学全般の話題を一般読者向けに解説・啓蒙しているシリーズである。1963年に創刊され、2018年時点でシリーズの数は2000点を超える。 科学は難解である、という先入観を払拭し、多角的観点からの研究を行い、多くの人々が科学への興味と科学的な視点を培うことを目標としている。キャッチコピーは「科学をあなたのポケットに」。「マンガ パソコン通信入門」(画:永野のりこ)など漫画形式もある。 講談社ブルーバックスのホームページ上に一部の書籍の正誤表が公開されている。2013年4月18日からブルーバックスの前書きを集めて公開するサイト「前書き図書館」をオープンした。 内容に関連したデータを収録したCD-ROMがついたシリーズも一時期刊行されていた。またカバーの角を10枚切り取って講談社に郵送すると特製ブックカバーがもれなく返送されてくるサービスがあったが、現在は廃止となっている。 洋書の翻訳もある。.

新しい!!: テイラー展開とブルーバックス · 続きを見る »

ブルック・テイラー

ブルック・テイラー(Sir Brook Taylor, 1685年8月18日 - 1731年12月29日)は、イギリスの数学者。.

新しい!!: テイラー展開とブルック・テイラー · 続きを見る »

テイラーの定理

''n''(''x'' − 1)''k''''f''(''k'')(1)/''k''! による近似 微分積分学において、テイラーの定理(テイラーのていり、Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。 テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている。 テイラーの定理は微分積分学の入門レベルで教えられ、解析学の中心的な初等的道具の1つである。純粋数学ではより進んだの入り口であり、より応用的な分野の数値計算や数理物理学においてよく使われている。テイラーの定理は任意次元 n, m の多変数ベクトル値関数 にも一般化する。テイラーの定理のこの一般化は微分幾何学や偏微分方程式において現れるいわゆるの定義の基礎である。 n の大きさを評価することで、近似がどれだけ正確であるかが分かる。f が無限回微分可能であり、Rn が0に収束する場合、すなわち である場合、f(x) はテイラー展開が可能である。そのとき f は解析的(analytic)であるといわれる。 テイラーの定理は平均値の定理を一般化したものになっている。実際、上の式において n.

新しい!!: テイラー展開とテイラーの定理 · 続きを見る »

ベルヌーイ数

ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。.

新しい!!: テイラー展開とベルヌーイ数 · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: テイラー展開とベクトル解析 · 続きを見る »

アインシュタインの縮約記法

アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、Einstein notation)は、アインシュタインが 1916 年に用いた添字 の和の記法である 。アインシュタインの規約(アインシュタインのきやく、Einstein convention)とも呼ばれる。 同じ項で添字が重なる場合は、その添字について和を取る、というルールである。この重なる指標を擬標(またはダミーの添字、)、重ならない指標を自由標(またはフリーの添字、)と呼ぶ。 このルールは一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。 アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという。.

新しい!!: テイラー展開とアインシュタインの縮約記法 · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: テイラー展開とオイラー数 · 続きを見る »

コリン・マクローリン

リン・マクローリン(Colin Maclaurin, 1698年2月 - 1746年6月14日)は、スコットランドの数学者である。マクローリン展開で知られる。.

新しい!!: テイラー展開とコリン・マクローリン · 続きを見る »

ジェームス・グレゴリー

ェームズ・グレゴリー ジェームズ・グレゴリー(James Gregory 、1638年11月 – 1675年10月)は、スコットランド生まれの数学者、天文学者である。最初の実用的な反射望遠鏡であるグレゴリー式望遠鏡を考案した。 アバディーンシャーの Drumoak に生まれた。セント・アンドルーズ大学、エディンバラ大学で教授を務めた。エディンバラで没した。 1663年に Optica Promota を出版し、小型の反射望遠鏡、いわゆるグレゴリー式望遠鏡について記述した。最初の実用的な反射望遠鏡で、今日ではあまり用いられないが1世紀半にわたって標準的な望遠鏡の地位を占め、ロバート・フックや王立協会の設立者の一人のロバート・モレーや、やはり反射望遠鏡を研究していたアイザック・ニュートンたちに注目された。 光の回折の分野でもニュートンのプリズムによる光の分散の実験の1年後にグレゴリーは鳥の羽を通った太陽の光が回折模様を描くことから、格子による光の回折を発見し、光がスペクトルの色に分かれることも観測した。 数学の分野では1667年に『円と双曲線の正しい求積』(Vera Circuli et Hyperbolae Quadratura) を出版し、収束無限級数を用いて円や双曲線の面積を求める方法を発表した。また、1668年にはメルカトル図法における赤道から任意緯線までの距離算出に必要となる、正割関数の積分(今日でいうところのグーデルマン関数の逆関数)を解析的に実行した。.

新しい!!: テイラー展開とジェームス・グレゴリー · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: テイラー展開と冪級数 · 続きを見る »

円板

閉包である。 各種幾何学における円板(えんばん、disk; disc と綴ることもある)は、平面上で円で囲まれた有界領域である。 円板はその境界となる円周を「すべて含む」または「全く含まない」ことを以ってそれぞれ「閉円板」または「開円板」という。.

新しい!!: テイラー展開と円板 · 続きを見る »

等比数列

等比数列(とうひすうれつ、または幾何数列(きかすうれつ)、geometric progression, geometric sequence)は、数列で、隣り合う二項の比が項番号によらず一定であるようなものである。その比のことを公比(こうひ、common ratio)という。例えば 4,12,36,108,… という数列 (an) は初項が 4 であり公比が 3 の等比数列である。公比 r は r.

新しい!!: テイラー展開と等比数列 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: テイラー展開と総和 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: テイラー展開と階乗 · 続きを見る »

領域 (解析学)

数学の解析学の分野における領域(りょういき、)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。 領域の境界の滑らかさについては、その領域上で定義される関数が満足する様々な性質に応じて、様々な要求がなされる。例えば、積分定理(グリーンの定理やストークスの定理)やソボレフ空間の性質、あるいは境界上の測度やの空間(境界上で定義される滑らかな関数の空間)を定義するために、そのような要求がなされる。広く扱われている領域としては、連続な境界を備える領域、リプシッツ領域、''C''1-級の境界を備える領域などがある。 有界領域(bounded domain)とは有界集合であるような領域のことを言い、対して有界領域の補集合の内部のことを外部(exterior)あるいは外部領域(external domain)と言う。 複素解析の分野における複素領域(complex domain)あるいは単純に領域(domain)とは、複素平面 内の任意の連結開部分集合のことを言う。例えば、複素平面全体も複素領域であり、開単位円や開上半平面なども複素領域である。正則関数に対しては、しばしば、複素領域が定義域の役割を担うことがある。 多変数複素関数の研究においては、 の任意の連結開部分集合を含むように、定義域の拡張が行われる。.

新しい!!: テイラー展開と領域 (解析学) · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: テイラー展開と複素平面 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: テイラー展開と解析関数 · 続きを見る »

講談社

株式会社講談社(こうだんしゃ、英称:Kodansha Ltd.)は、日本の総合出版社。創業者の野間清治の一族が経営する同族企業。.

新しい!!: テイラー展開と講談社 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: テイラー展開と関数 (数学) · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: テイラー展開と自然対数 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: テイラー展開と極限 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: テイラー展開と正則関数 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: テイラー展開と滑らかな関数 · 続きを見る »

漸近展開

漸近展開(ぜんきんてんかい、Asymptotic expansion)とは、与えられた関数を、より簡単な形をした関数列の級数として近似することをいう。テイラー展開は漸近展開の特別な場合であるが、漸近展開で得られた級数の値は、必ずしも元の関数の値に収束するとは言えない。しかし、関数の性質を調べる際、元の関数の形では扱いが難しい場合、漸近展開によって元の関数を級数の形で近似することにより、関数の性質が得られることがある。漸近展開は解析学では重要な手法の一つであり、確率論の基礎として用いることがある。.

新しい!!: テイラー展開と漸近展開 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: テイラー展開と指数関数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: テイラー展開と数学 · 続きを見る »

数列の極限

正整数 が大きくなるにつれて、値 は にいくらでも近くなる。「数列 の極限は である」という。 数学において、数列や点列の極限(limit of a sequence)は数列や点列の項が「近づく」値であるCourant (1961), p. 29.

新しい!!: テイラー展開と数列の極限 · 続きを見る »

整関数

複素解析における整函数(せいかんすう、entire function)は、複素数平面の全域で定義される正則函数を言う。そのような函数の例として、特に複素指数函数や多項式函数およびそれらの和、積、合成を用いた組合せとしての三角函数および双曲線函数などを挙げることができる。 二つの整函数の商として有理型函数が与えられる。 解析函数論の特定の場合として考えれば「整函数の基本理論」は一般論からの単に帰結であり、それは本質的に複素素関数論の初歩(しばしばヴァイヤシュトラスの因数分解定理によって詳しく調べられる)である。しかしその研究は、19世紀半ばごろのコーシー,, ヴァイヤシュトラスらから始まり、ボレル, アダマール,, ピカール,, ら(そしてネヴァンリンナを忘れることはできない)によって著しく豊かに推し進められ、いまや堂々たる理論となった。 整函数の理論は、整函数をその増大度によって分類しようとするもので、整函数のテイラー係数と増大度の間の関係、取りうる零点と整函数の振る舞いの間の関係、整函数とその導函数の間の関係を特定する。 整函数の理論におけるこれらの側面は、有理型函数に対するものに拡張される。.

新しい!!: テイラー展開と整関数 · 続きを見る »

0の0乗

の 乗(ぜろのぜろじょう、zero to the power of zero, 0 to the 0th power)は、累乗あるいは指数関数において、底を 、指数を としたものである。通常、指数関数 は実数 と に対して定義されているため、 はこの意味では定義されていない。その値は、指数の が「非負整数の 」であるような場合には と定義しておくと便利であることが多い一方で、0 と定義するのが便利である場合もある。少なくとも「実数あるいは複素数としての 0」であるような場合には、例えば二変数関数 を考えれば分かるように、原点 において自然な(二変数関数として連続となる)定義は存在しないから、連続性や解析性による延長はこの議論において有効でない。.

新しい!!: テイラー展開と0の0乗 · 続きを見る »

ここにリダイレクトされます:

Taylor展開べき級数展開マクローリン展開マクローリン級数テーラー展開テーラー級数法テイラー級数テイラー級数展開テイラー近似

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »