ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ダークエネルギーと宇宙マイクロ波背景放射

ショートカット: 違い類似点ジャカード類似性係数参考文献

ダークエネルギーと宇宙マイクロ波背景放射の違い

ダークエネルギー vs. 宇宙マイクロ波背景放射

ダークエネルギー(ダークエナジー、暗黒エネルギー、dark energy)とは、現代宇宙論および天文学において、宇宙全体に浸透し、宇宙の拡張を加速していると考えられる仮説上のエネルギーである。2013年までに発表されたプランクの観測結果からは、宇宙の質量とエネルギーに占める割合は、原子等の通常の物質が4.9%、暗黒物質(ダークマター)が26.8%、ダークエネルギーが68.3%と算定されている。. cmあたりの波数。横軸の5近辺の波長1.9mm、160.2Ghzにピークがあることが読み取れる WMAPによる宇宙マイクロ波背景放射の温度ゆらぎ。 宇宙マイクロ波背景放射(うちゅうマイクロははいけいほうしゃ、cosmic microwave background; CMB)とは、天球上の全方向からほぼ等方的に観測されるマイクロ波である。そのスペクトルは2.725Kの黒体放射に極めてよく一致している。 単に宇宙背景放射 (cosmic background radiation; CBR)、マイクロ波背景放射 (microwave background radiation; MBR) 等とも言う。黒体放射温度から3K背景放射、3K放射とも言う。宇宙マイクロ波背景輻射、宇宙背景輻射などとも言う(輻射は放射の同義語)。.

ダークエネルギーと宇宙マイクロ波背景放射間の類似点

ダークエネルギーと宇宙マイクロ波背景放射は(ユニオンペディアに)共通で14ものを持っています: 宇宙のインフレーション宇宙の晴れ上がり宇宙論宇宙論パラメータ地球ノーベル物理学賞ハッブルの法則バリオンプランク (人工衛星)ビッグバン銀河WMAP暗黒物質欧州宇宙機関

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

ダークエネルギーと宇宙のインフレーション · 宇宙のインフレーションと宇宙マイクロ波背景放射 · 続きを見る »

宇宙の晴れ上がり

宇宙の晴れ上がり(うちゅうのはれあがり、Transparent to radiation)は、ビッグバン理論において宇宙の始まり以来、初めて光子が長距離を進めるようになった時期を指す。これはビッグバンから約38万年後であるとされ、それ以前を「宇宙の暗黒時代」などと対比で呼ぶことがある。英語では電離の対義語となる再結合を意味する "" であり、。 ビッグバンからおよそ38万年後に宇宙の温度は約 まで低下し、電子と原子核が結合して原子を生成するようになると、光子は電子との相互作用をまぬがれ長距離を進めるようになった。これを宇宙が放射に対して透明になった、あるいは宇宙が晴れ上がった、と表現する。同様に、宇宙の晴れ上がり以前の状態は、宇宙が放射に対して不透明である、あるいは宇宙が霧がかっている と、表現する。 この晴れ上がりの時期のマイクロ波は最後の散乱面 あるいは宇宙マイクロ波背景放射と呼ばれ、ビッグバン理論について現在得られる最も良い証拠であると考えられている。.

ダークエネルギーと宇宙の晴れ上がり · 宇宙の晴れ上がりと宇宙マイクロ波背景放射 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

ダークエネルギーと宇宙論 · 宇宙マイクロ波背景放射と宇宙論 · 続きを見る »

宇宙論パラメータ

宇宙論パラメータ(うちゅうろんパラメータ、Cosmological Parameter)とは、観測できる宇宙の組成から推定される値であり、初期宇宙において形成された物理指標値のことである。.

ダークエネルギーと宇宙論パラメータ · 宇宙マイクロ波背景放射と宇宙論パラメータ · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

ダークエネルギーと地球 · 地球と宇宙マイクロ波背景放射 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

ダークエネルギーとノーベル物理学賞 · ノーベル物理学賞と宇宙マイクロ波背景放射 · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

ダークエネルギーとハッブルの法則 · ハッブルの法則と宇宙マイクロ波背景放射 · 続きを見る »

バリオン

バリオン(baryon)とは、3つのクォークから構成される亜原子粒子である。素粒子物理学の標準模型では、ハドロンの一種である。重粒子(じゅうりゅうし)とも言う。.

ダークエネルギーとバリオン · バリオンと宇宙マイクロ波背景放射 · 続きを見る »

プランク (人工衛星)

プランク (Planck) は、宇宙背景放射を観測するための高感度・高分解能の観測装置を備えた宇宙望遠鏡である。ESAで2000年に3番目の中規模計画として計画された。当初はCOBRAS/SAMBAと呼ばれていたが、後にノーベル物理学賞を受賞したドイツのマックス・プランクにちなんで改名された。 NASAのWMAP探査機が広視野・低感度であるのに対し、プランクは対照的である。相補的な成果や宇宙創生期の解明が期待される。 プランクは、2009年5月14日にアリアン5でハーシェル宇宙望遠鏡と共に打ちあげられ、7月にはL2点に投入された。2010年2月には2回目の全天サーベイを開始した。 2013年3月21日に、全天の宇宙背景放射マップが公開された。NASAのWMAPが観測したデータよりも高精度な宇宙背景放射マップが完成し、宇宙の年齢もこれまでよりやや古い約138億年であることが確認された。 2012年1月14日、2つの観測装置のうちの高周波数装置 (HFI) が冷却用の液体ヘリウム枯渇のため観測を終了した。以降は低周波数装置 (LFI) のみで観測を続けていた 。LFIによる観測も2013年10月3日に終了し、10月9日にはスラスタを噴射してL2点からの移動を開始し、10月23日に送信機を停止して運用を終えた。プランクは、運用終了までにHFIとLFIの双方を使っての全天サーベイを5回実施した 。.

ダークエネルギーとプランク (人工衛星) · プランク (人工衛星)と宇宙マイクロ波背景放射 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

ダークエネルギーとビッグバン · ビッグバンと宇宙マイクロ波背景放射 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

ダークエネルギーと銀河 · 宇宙マイクロ波背景放射と銀河 · 続きを見る »

WMAP

WMAP WMAP で得られた宇宙マイクロ波背景放射の画像 比較:COBE で得られた宇宙マイクロ波背景放射の画像 ウィルキンソン・マイクロ波異方性探査機(Wilkinson Microwave Anisotropy Probe: WMAP)は、アメリカ航空宇宙局 (NASA) が打ち上げた宇宙探査機である。WMAP の任務はビッグバンの名残の熱放射である宇宙マイクロ波背景放射 (CMB) の温度を全天にわたってサーベイ観測することである。 この探査機は2001年6月30日午後3時46分 (EDT) にアメリカのケープカナベラル空軍基地からデルタIIロケットで打ち上げられ、太陽と地球のラグランジュ点 (L2) で2010年8月まで観測を行った。.

WMAPとダークエネルギー · WMAPと宇宙マイクロ波背景放射 · 続きを見る »

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter ダークマター)とは、天文学的現象を説明するために考えだされた「質量は持つが、光学的に直接観測できない」とされる、仮説上の物質である。"銀河系内に遍く存在する"、"物質とはほとんど相互作用しない"などといった想定がされており、間接的にその存在を示唆する観測事実は増えているものの、その正体は未だ不明である。.

ダークエネルギーと暗黒物質 · 宇宙マイクロ波背景放射と暗黒物質 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

ダークエネルギーと欧州宇宙機関 · 宇宙マイクロ波背景放射と欧州宇宙機関 · 続きを見る »

上記のリストは以下の質問に答えます

ダークエネルギーと宇宙マイクロ波背景放射の間の比較

宇宙マイクロ波背景放射が82を有しているダークエネルギーは、72の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は9.09%です = 14 / (72 + 82)。

参考文献

この記事では、ダークエネルギーと宇宙マイクロ波背景放射との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »