ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

スペースシャトル

索引 スペースシャトル

ペースシャトル(Space Shuttle)は、アメリカ航空宇宙局(NASA)が1981年から2011年にかけて135回打ち上げた、再使用をコンセプトに含んだ有人宇宙船である。 もともと「再使用」というコンセプトが強調されていた。しかし、結果として出来上がったシステムでは、オービタ部分は繰り返し使用されたものの、打ち上げられる各部分の全てが再利用できていたわけではなく、打ち上げ時にオービタの底側にある赤色の巨大な外部燃料タンクなどは基本的には使い捨てである。.

354 関係: ABCニュース加速度ATKランチ・システムズ・グループ垂直垂直尾翼停電半導体メモリ単段式宇宙輸送機合金大西洋大気圏大気圏再突入太平洋太陽光夕焼け姿勢制御システム官僚制宇宙空間宇宙遊泳宇宙飛行士宇宙開発宇宙探査機宇宙服人工衛星人工衛星の軌道低軌道地球ペイロード・アシスト・モジュールミリメートルミリ秒マーキュリー計画マッハ数ノズルマゼラン (探査機)チャレンジャー (オービタ)チャレンジャー号爆発事故チタンハンツビルハードディスクドライブハードウェアハッブル宇宙望遠鏡バラク・オバマバイエルン州ポンプメガバイトモノメチルヒドラジンランデブー (宇宙開発)ラップトップパソコンリチャード・ニクソンリチウム...リフティングボディローリングロッキード・マーティンロックウェル・インターナショナルロケットロケットダインロケットエンジンの推進剤ロシアヴァルター・ドルンベルガーボーイングボーイング747ボーイング777トンヘルメットヘルベチカブラン (オービタ)ブラン2.01ブラン2.02ブラン2.03プチーチュカプラントル・グロワートの特異点プログラミング言語プログラム (コンピュータ)パラシュートパイロット (航空)ヒューストンヒドラジンビットビジョン・フォー・スペース・エクスプロレーションピッチングピトー管テストパイロットディスカバリー (オービタ)デジタルフライ・バイ・ワイヤファルコン9フィートフェルトフェイルセーフフクロウドラゴン (宇宙船)ドルドイツニューメキシコ州ニュートンニール・アームストロングホッパー (宇宙船)分離ボルト嘉手納飛行場アナログアポロ12号アポロ計画アメリカ合衆国の国旗アメリカ合衆国大統領アメリカ合衆国上院アメリカ合衆国議会アメリカ国防総省アメリカ空軍アメリカ航空宇宙学会アメリカ航空宇宙局アメリカ航空諮問委員会アルミニウムアルミニウム合金アルタイル (月面着陸機)アレスIアレスIVアレスVアンドロジナスドッキング機構アンタレス (ロケット)アームストロング飛行研究センターアトランティス (オービタ)アビオニクスイントレピッド海上航空宇宙博物館インド洋イオンエルメス (宇宙船)エルパソ (テキサス州)エレボンエンデバー (オービタ)エンタープライズ (オービタ)エドワーズ空軍基地エアバスA380オリオン (宇宙船)オートパイロットオービタオービタル・サイエンシズカリフォルニア州ガリレオ (探査機)キロバイトキツツキ目クリーペルグラマン ガルフストリーム IIグライダーグラスコックピットグレートオブザバトリー計画ケネディ宇宙センター第39発射施設ケープ・カナベラルコロンビア (オービタ)コロンビア号空中分解事故コンポジット推進薬コンピュータコンステレーション計画シャトルシャトル (織物)シャトル・リモート・マニピュレータ・システムシャトル輸送機シリカシグナス (宇宙船)ジェミニ計画ジグソーパズルスペースラブスペース・ローンチ・システムスペースプレーンスペースシャトル外部燃料タンクスペースシャトル固体燃料補助ロケットスペースシャトル組立棟スペースシャトル計画スペースシャトル軌道制御システムスペースXスミソニアン博物館スカイロンセルシウス度ソフトウェアターボチャージャータイム (雑誌)タイヤサターンV再使用型宇宙往還機商業軌道輸送サービス動力動翼国立航空宇宙博物館国際宇宙ステーション四酸化二窒素CPU火薬火星磁気テープ磁気コアメモリ積乱雲空力ブレーキ空気翼平面形組み込みシステム炭素繊維強化炭素複合材料無重量状態熱圏燃料発泡スチロール音速運動エネルギー落雷衝撃波風洞補助動力装置解像度計量器記憶装置高揚力装置超音速軌道傾斜角迎角近点・遠点航空工学航空機航空機関士赤道蒸発重力重力加速度酸化剤電力電卓電子機器電線電気電気伝導体電池電流逆噴射降着装置HOPE (宇宙往還機)HP-41IBMMNASAシャトル着陸施設OリングPL/IRL-10SSMESTS-1STS-107STS-114STS-118STS-125STS-130STS-131STS-132STS-133STS-134STS-135STS-2STS-26STS-31STS-4STS-51-LSTS-6STS-92STS-95T-38 (航空機)TDRSX-15 (航空機)X-20 (宇宙船)X-33 (航空機)Xプレーン抵抗抗力接地推力搭乗運用技術者極軌道欧州宇宙機関水蒸気気温油圧液体酸素液体水素液晶滑空滑走路朝日新聞デジタル有人宇宙飛行最大動圧点海里断熱材方向舵旅客機操縦桿放電政治学慣性上段ロケット10月11日10月12日10月26日10月3日11月11日11月19日12月23日1954年1957年1966年1967年1968年1969年1973年1977年1980年代1981年1982年1983年1984年1985年1986年1988年1989年1990年1990年代1992年1993年1995年1996年1月28日2000年2001年2003年2005年2007年2008年2009年2010年2011年2月18日2月1日2月24日2月8日4月12日4月24日4月29日4月4日5月14日5月4日5月7日7月25日7月8日8月12日8月30日9月29日 インデックスを展開 (304 もっと) »

ABCニュース

ABCニュー.

新しい!!: スペースシャトルとABCニュース · 続きを見る »

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: スペースシャトルと加速度 · 続きを見る »

ATKランチ・システムズ・グループ

トライデントII(D5)FBM。サイオコール製の第1段固体燃料ロケット・エンジンを点火している。 ATKランチ・システムズ・グループ()は、初期にはゴム及び関連した化学製品に携わり、後にロケットとミサイルの推進システムに携わるアメリカ合衆国の企業である。ATKとは親会社のアライアント・テックシステムズ の略(NYSEコード)である。 2006年に現在の社名になるまで、社名は一定ではなかったものの常にThiokolの名が入っていた。Thiokolは、同社の最初の製品のポリサルファイド系ポリマーの商品名で、ギリシア語で硫黄を意味するΘειο(theio)と接着剤を意味するκολλα(kolla)の混成語である。 日本では、東レによるポリサルファイドポリマのライセンス製品の商標「チオコールLP」があるため「チオコール」と呼ばれることもあるが、ロケット関係をはじめとして一般には「サイオコール」というカタカナ書きが広く使われている(たとえば文科省によるロケット関連の資料等)。この記事では前述の東レの製品以外については「サイオコール」を使っている。 同社は、合併・分割・買収・売却を繰り返す間に次のように社名が変わった。.

新しい!!: スペースシャトルとATKランチ・システムズ・グループ · 続きを見る »

垂直

初等幾何学において、垂直(すいちょく、perpendicular)であること、すなわち垂直性 は直角に交わる二つの直線の間の関係性を言う。この性質は関連するほかの幾何学的対象に対しても拡張される。 垂線 に関連して垂線の「足」() という術語がしばしば用いられる。考える図形の向きは如何様にも変えることができるから、足と謂えどもそれが必ずしも図形の下方にあるわけではない。 垂直性はより一般の数学概念である直交性の特別の場合と考えられる。すなわち、垂直性とは古典的な幾何学的対象に関する直交性を言うものである。ゆえに、より進んだ数学において、より複雑な幾何学的直交性(例えば曲面とその法線の関係など)に対して「垂直」あるいは「垂線」のような語を用いることもある。.

新しい!!: スペースシャトルと垂直 · 続きを見る »

垂直尾翼

垂直尾翼(すいちょくびよく)は、飛行機を始めとする航空機の尾翼の一種で、垂直についている部分。潜水船・高速自動車・ホバークラフト等にも設けられることがある。.

新しい!!: スペースシャトルと垂直尾翼 · 続きを見る »

停電

停電(ていでん)とは、配電(電力供給)が停止すること。主に需要家への電力供給の停止について言う。原因はさまざまである。.

新しい!!: スペースシャトルと停電 · 続きを見る »

半導体メモリ

揮発性メモリの一種、DDR2 SDRAMを搭載したノートPC用のメモリ、SO-DIMM 半導体メモリ(はんどうたいメモリ)は、半導体素子(特に、もっぱら集積回路)によって構成された記憶装置(メモリ)である。.

新しい!!: スペースシャトルと半導体メモリ · 続きを見る »

単段式宇宙輸送機

SSTOの実験機 DC-X 単段式宇宙輸送機(たんだんしきうちゅうゆそうき、single-stage-to-orbit、SSTOと略す)は、燃料や推進剤のみを消費し、エンジンや燃料タンクなどの機材を切り離さずに衛星軌道に到達できる宇宙機である。単段式宇宙往還機などとも訳す。"SSTO" は字義の上では必ずしも再使用できることを意味しないが、再利用しないものを捨てないメリットは薄いので、通常は単段式の再使用型宇宙往還機となる。.

新しい!!: スペースシャトルと単段式宇宙輸送機 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

新しい!!: スペースシャトルと合金 · 続きを見る »

大西洋

大西洋(たいせいよう、Atlantic Ocean、Oceanus Atlanticus)は、ヨーロッパ大陸とアフリカ大陸、アメリカ大陸の間にある海である。なお、大西洋は、南大西洋と北大西洋とに分けて考えることもある。おおまかに言うと、南大西洋はアフリカ大陸と南アメリカ大陸の分裂によって誕生した海洋であり、北大西洋は北アメリカ大陸とユーラシア大陸の分裂によって誕生した海洋である。これらの大陸の分裂は、ほぼ同時期に発生したと考えられており、したがって南大西洋と北大西洋もほぼ同時期に誕生したとされる。.

新しい!!: スペースシャトルと大西洋 · 続きを見る »

大気圏

木星の大気圏の外観。大赤斑が確認できる 大気圏(たいきけん、)とは、大気の球状層(圏)。大気(たいき、、)とは、惑星、衛星などの(大質量の)天体を取り囲む気体を言う。大気は天体の重力によって引きつけられ、保持(宇宙空間への拡散が妨げられること)されている。天体の重力が強く、大気の温度が低いほど大気は保持される。.

新しい!!: スペースシャトルと大気圏 · 続きを見る »

大気圏再突入

ミュレーション画像 大気圏再突入(たいきけんさいとつにゅう、atmospheric reentry)とは、宇宙船などが真空に近い宇宙空間から地球などの大気圏に進入すること。単に再突入(さいとつにゅう、)ともいう。宇宙飛行においては最も危険が大きいフェイズのひとつである。大気圏突入(たいきけんとつにゅう、atmospheric entry)と言う場合は、隕石など外来の物体も含む広義の使われ方であるのに対し、大気圏再突入は地上から打ち上げた宇宙機や物体の帰還に限って言う。.

新しい!!: スペースシャトルと大気圏再突入 · 続きを見る »

太平洋

太平洋(たいへいよう)は、アジア(あるいはユーラシア)、オーストラリア、南極、南北アメリカの各大陸に囲まれる、世界最大の海洋。大西洋やインド洋とともに、三大洋の1つに数えられる。日本列島も太平洋の周縁部に位置する。面積は約1億5,555万7千平方キロメートルであり、全地表の約3分の1にあたる。英語名からパシフィックオーシャン(Pacific ocean)とも日本語で表記されることもある。.

新しい!!: スペースシャトルと太平洋 · 続きを見る »

太陽光

雲間から差す太陽光。 太陽光(たいようこう、sunlight)とは、太陽が放つ光である。日光(にっこう)とも言う。地球における生物の営みや気候などに多大な影響を与えている。人類も、太陽の恵みとも言われる日の光の恩恵を享受してきた。.

新しい!!: スペースシャトルと太陽光 · 続きを見る »

夕焼け

水平線に沈む太陽 夕焼け空 グリーンフラッシュ 夕焼け(ゆうやけ)は、日没の頃、西の地平線に近い空が赤く見える現象のこと。 夕焼けの状態の空を夕焼け空、夕焼けで赤く染まった雲を“夕焼け雲”と称する。日の出の頃に東の空が同様に見えるのは朝焼け(あさやけ)という。.

新しい!!: スペースシャトルと夕焼け · 続きを見る »

姿勢制御システム

姿勢制御システム(しせいせいぎょシステム、Reaction Control System, RCS)は、宇宙船のサブシステムの一種である。その目的は姿勢制御と操縦である。RCSは、任意の方向に若干の推力を与えることができる。また、機体の回転を制御するトルクを発生する。主エンジンが1つの方向にしか噴射できないのとは対照的であるが、もちろん主エンジンの方が強力である。 RCS は、大小のスラスターを組み合わせて構成され、複数のスラスターを同時に噴射することで様々な方向への推力を得る。 姿勢制御システムが使われるのは次のような場合である。.

新しい!!: スペースシャトルと姿勢制御システム · 続きを見る »

官僚制

本記事では官僚制(かんりょうせい、bureaucracy)について解説する。.

新しい!!: スペースシャトルと官僚制 · 続きを見る »

宇宙空間

地球大気の鉛直構造(縮尺は正しくない) 宇宙空間(うちゅうくうかん、)は、地球およびその他の天体(それぞれの大気圏を含む)に属さない空間領域を指す。また別義では、地球以外の天体を含み、したがって、地球の大気圏よりも外に広がる空間領域を指す。なお英語では を省いて単に と呼ぶ場合も多い。 狭義の宇宙空間には星間ガスと呼ばれる水素 (H) やヘリウム (He) や星間物質と呼ばれるものが存在している。それらによって恒星などが構成されていく。.

新しい!!: スペースシャトルと宇宙空間 · 続きを見る »

宇宙遊泳

MMUを装着して自由飛行するブルース・マッカンドレス飛行士 カナダアーム2の先端に足を固定して船外活動を行うスティーヴ・ロビンソン飛行士 宇宙遊泳(うちゅうゆうえい, spacewalk)とは、宇宙服を着た宇宙飛行士(船外活動員)が宇宙船の外に出て活動すること。船外活動 (extra-vehicular activity; EVA)で行う作業の一種である。本項では、宇宙遊泳のことだけでなく船外活動全般も含めて表記する。 宇宙遊泳が開始された当初は、命綱で宇宙飛行士と宇宙船を繋いで船内から酸素の供給などを行っていた。現在では、宇宙服自体に酸素を供給する機能が付与されているため、移動の自由度は増している。しかし、安全上の理由で命綱を使用するのが基本的なルールである。スペースシャトルでは初期のミッションにおいて、自由に移動噴射や姿勢制御ができる有人機動ユニット(MMU)を使用したことがあったが、実用的ではなかったため使用されなくなった。近年では、スペースシャトルや国際宇宙ステーション(ISS)のロボットアームの先端に足場を固定して行われる事が多い。.

新しい!!: スペースシャトルと宇宙遊泳 · 続きを見る »

宇宙飛行士

ユーリイ・ガガーリン アポロ計画でのニール・アームストロング NASAでの毛利衛 MMU) を使用して宇宙遊泳を行なっている。 宇宙飛行士(うちゅうひこうし、、ソ連/ロシアの飛行士はコスモノート カスマナーフト kosmonavt、中国の飛行士は宇航員や太空人と呼ぶのが通例)とは、宇宙船による大気圏外の飛行を行なうよう選ばれた人のこと。.

新しい!!: スペースシャトルと宇宙飛行士 · 続きを見る »

宇宙開発

宇宙空間で作業を行う宇宙飛行士。 宇宙開発(うちゅうかいはつ、)は、宇宙空間を人間の社会的な営みに役立てるため、あるいは人間の探求心を満たすために、宇宙に各種機器を送り出したり、さらには人間自身が宇宙に出て行くための活動全般をいう。.

新しい!!: スペースシャトルと宇宙開発 · 続きを見る »

宇宙探査機

宇宙探査機(うちゅうたんさき、英語:space probe)は、探査機の一種で、地球以外の天体などを探査する目的で地球軌道外の宇宙に送り出される宇宙機であり、ほとんどが無人機である。宇宙空間そのものの観測(太陽風や磁場など)、あるいは、惑星、衛星、太陽、彗星、小惑星などの探査を目的とする。現在は技術の限界から太陽系内の探査にとどまっているが、遠い将来は太陽系の外へ探査機を飛ばすことを考える科学者もいる。.

新しい!!: スペースシャトルと宇宙探査機 · 続きを見る »

宇宙服

宇宙服(うちゅうふく)とは、宇宙飛行士が宇宙空間で安全に生存・活動するために着用する、生命維持装置を備えた気密服のこと。宇宙船内で着用する船内服(与圧服)と、船外活動時に着用する船外服に大別される。ここでは、主に船外宇宙服について記述する。.

新しい!!: スペースシャトルと宇宙服 · 続きを見る »

人工衛星

GPS衛星の軌道アニメーション 人工衛星(じんこうえいせい)とは、惑星、主に地球の軌道上に存在し、具体的な目的を持つ人工天体。地球では、ある物体をロケットに載せて第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s.

新しい!!: スペースシャトルと人工衛星 · 続きを見る »

人工衛星の軌道

人工衛星の軌道(じんこうえいせいのきどう)では、個々の利用目的にあわせた軌道に投入される人工衛星の、軌道の種類や性質や、衛星の位置を知る方法を示す。.

新しい!!: スペースシャトルと人工衛星の軌道 · 続きを見る »

低軌道

低軌道 (ていきどう、英語: low orbit) は、人工衛星などの物体のとる衛星軌道のうち、中軌道よりも高度が低いもの。 地球を回る低軌道を地球低軌道 (low Earth orbit、LEO) と言う。LEOは、地球表面からの高度2,000km以下を差し、これに対し、中軌道(MEO)は2,000 kmから36,000 km未満、静止軌道(GEO)は36 000 km前後である。地球低軌道衛星は、約27400 km/h(約8 km/s)で飛行し、1回の周回に約1.5時間を要する(高度約350 kmの例)。 大気のある天体では、低軌道より低い軌道は安定せず、大気の抵抗で急激に高度を下げ、やがては大気中で燃え尽きてしまう。 低軌道は、地球に接近しているという点で、次のような利点がある。.

新しい!!: スペースシャトルと低軌道 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: スペースシャトルと地球 · 続きを見る »

ペイロード・アシスト・モジュール

ペイロード・アシスト・モジュール(英:Payload Assist Module, PAM)とは、アメリカのモジュール化された上段ロケットであり、チオコール社(現在のATKランチ・システムズ・グループ)のスターシリーズの固体燃料ロケットを使用し、スペースシャトル、デルタロケット、タイタンロケットの上段ロケットとして利用された。PAMは人工衛星を低軌道から静止トランスファ軌道まで運ぶのに使われたり、探査機を惑星間航行コースに投入するのに使われた。シャトルからの打ち上げ時には、ペイロードはPAMを載せたターンテーブルによって放出前に回転を加えられスピン安定させていた。 スペースシャトルのために独自に開発されていたほか、次の4種類のPAMが開発された。.

新しい!!: スペースシャトルとペイロード・アシスト・モジュール · 続きを見る »

ミリメートル

ミリメートル(記号mm)は、国際単位系の長さの単位で、1/1000メートル(m)である。.

新しい!!: スペースシャトルとミリメートル · 続きを見る »

ミリ秒

ミリ秒(ミリびょう、millisecond、記号: ms)は、1000分の1秒(10 s, 1/1,000 s)に等しい時間の単位である。 「ミリ秒」という語は、SI接頭辞「ミリ」とSI基本単位「秒」で構成されている。その記号は ms である。 1ミリ秒は1000マイクロ秒および秒に等しい。SI接頭辞「センチ」「デシ」を使って、10ミリ秒(1/100秒)に等しい「センチ秒」(centisecond)、100ミリ秒(1/10秒)に等しい「デシ秒」(decisecond)といった単位も定義はできるが、通常これらの単位が用いられることはなく、数十ミリ秒および数百ミリ秒として表される。 ミリ秒で表される時間については、1 E-3 s・1 E-2 s・1 E-1 sを参照。.

新しい!!: スペースシャトルとミリ秒 · 続きを見る »

マーキュリー計画

マーキュリー計画(マーキュリーけいかく、Project Mercury)は、1958年から1963年にかけて実施された、アメリカ合衆国初の有人宇宙飛行計画である。これはアメリカとソビエト連邦(以下ソ連)の間でくり広げられた宇宙開発競争の初期の焦点であり、人間を地球周回軌道上に送り安全に帰還させることを、理想的にはソ連よりも先に達成することを目標としていた。計画は、空軍から事業を引き継いだ新設の非軍事機関アメリカ航空宇宙局によって実行され、20回の無人飛行 (実験動物を乗せたものを含む)、およびマーキュリー・セブンと呼ばれるアメリカ初の宇宙飛行士たちを搭乗させた6回の有人飛行が行われた。 宇宙開発競争は、1957年にソ連が人工衛星スプートニク1号を発射したことにより始まった。この事件はアメリカ国民に衝撃を与え、その結果NASAが創設され、当時行われていた宇宙開発計画は文民統制の下で推進されることとなった。1958年、NASAは人工衛星エクスプローラー1号の発射に成功し、次なる目標は有人宇宙飛行となった。 だが初めて人間を宇宙に送ったのは、またしてもソ連であった。1961年4月、史上初の宇宙飛行士ユーリ・ガガーリンの乗るボストーク1号が地球を1周した。この直後の5月5日、アメリカ初の宇宙飛行士アラン・シェパードが搭乗するマーキュリー・レッドストーン3号が弾道飛行を行った。同年8月、ソ連はゲルマン・チトフを飛行させ1日間の宇宙滞在に成功した。アメリカが衛星軌道に到達したのは翌1962年2月20日のことで、ジョン・グレンが地球を3周した。マーキュリー計画が終了した1963年の時点で両国はそれぞれ6人の飛行士を宇宙に送っていたが、アメリカは宇宙での総滞在時間という点で依然としてソ連に後れを取っていた。 マーキュリー宇宙船を設計したのは、マクドネル・エアクラフト社であった。円錐の形状をした船内は完全に与圧され、水、酸素、食料などの補給物資を約1日間にわたり飛行士に供給した。打ち上げはフロリダ州ケープ・カナベラル空軍基地で行われ、発射機にはレッドストーンミサイルまたはアトラスDミサイルを改良したロケットが使用された。また宇宙船の先には、ロケットが故障するなどの緊急事態が発生した際に飛行士を安全に脱出させるための緊急脱出用ロケットが取りつけられていた。飛行手順は、追跡および通信の基地である有人宇宙飛行ネットワークを経由して地上からコントロールされるように設計されていたが、機内にもバックアップのための制御装置が搭載されていた。帰還の際には、小型の逆噴射用ロケットを点火して軌道から離脱した。また機体の底部には溶融式の耐熱保護板が取りつけられており、大気圏再突入時の高温から宇宙船を守った。最終的にはパラシュートが開いて海上に着水し、近隣にいる海軍の艦船のヘリコプターが宇宙船と飛行士を回収した。 計画名は、ローマ神話の旅行の神メルクリウス (Mercurius, マーキュリー) からつけられた。マーキュリーは翼の生えた靴を履き、高速で移動すると言われている。計画の総費用は16億ドル (2010年の貨幣価値で換算) で、およそ200万人の人間が関わった。宇宙飛行士たちはマーキュリー・セブンの名で知られ、各宇宙船には「7」で終わる名称が、それぞれの飛行士によってつけられた。 開始当初こそ失敗が連続して進行は遅れたものの、計画は次第に知名度を得、テレビやラジオで世界中に報道されるようになった。この後の二人乗りの宇宙船を使用するジェミニ計画では、月飛行で必要となる宇宙空間でのランデブーやドッキングが実行された。マーキュリー計画はその基礎を築いたと言える。さらにアポロ計画の開始が発表されたのは、マーキュリーが初の有人宇宙飛行を成功させた数週間後のことだった。.

新しい!!: スペースシャトルとマーキュリー計画 · 続きを見る »

マッハ数

マッハ数(マッハすう、Mach number)は、流体の流れの速さと音速との比で求まる無次元量である。 名称は、オーストリアの物理学者エルンスト・マッハ(Ernst Mach)に由来し、航空技師のにより名付けられた。英語圏ではMachを英語読みして(マーク・ナンバ)、あるいは、(メァク・ナンバ)と呼ぶ。.

新しい!!: スペースシャトルとマッハ数 · 続きを見る »

ノズル

ノズル(Nozzle)とは、気体や液体のような流体の流れる方向を定めるために使用されるパイプ状の機械部品のこと。ノズルは流れる物質の流量、流速、方向、圧力と言った流体の持つ特性をコントロールするために幅広く使用される。.

新しい!!: スペースシャトルとノズル · 続きを見る »

マゼラン (探査機)

ペースシャトルから放出されるマゼラン マゼラン (Magellan) は、アメリカ航空宇宙局 (NASA) が1989年に打ち上げた惑星探査機。金星を探査することが目的であり、レーダーにより金星地表の地形を明らかにした。.

新しい!!: スペースシャトルとマゼラン (探査機) · 続きを見る »

チャレンジャー (オービタ)

チャレンジャーの打ち上げ 爆発事故直後の写真 チャレンジャー(Challenger, NASA型名 STA-099およびOV-099)はスペースシャトル・オービタである。2号機のコロンビアに続く機体だが、滑空試験機エンタープライズと同時に製造された地上試験機を改造しているため、コロンビアより早い時期に製造されている。名前の由来は1873年から1876年にかけて探検航海を行ったイギリス海軍のコルベット チャレンジャー号(HMS Challenger)から。 初飛行は1983年4月4日のSTS-6。9回のミッションを成功させた。.

新しい!!: スペースシャトルとチャレンジャー (オービタ) · 続きを見る »

チャレンジャー号爆発事故

STS-51-Lの飛行士。前列左からマイケル・J・スミス、ディック・スコビー、ロナルド・マクネイア。後列左からエリソン・オニヅカ、クリスタ・マコーリフ、グレゴリー・ジャービス、ジュディス・レズニック チャレンジャー号爆発事故(チャレンジャーごうばくはつじこ)は、1986年1月28日、アメリカ合衆国のスペースシャトルチャレンジャー号が射ち上げから73秒後に分解し、7名の乗組員が死亡した事故である。同オービタは北米東部標準時午前11時39分(16:39UTC、1月29日1:39JST)にアメリカ合衆国フロリダ州中部沖の大西洋上で空中分解した。.

新しい!!: スペースシャトルとチャレンジャー号爆発事故 · 続きを見る »

チタン

二酸化チタン粉末(最も広く使用されているチタン化合物) チタン製指輪 (酸化皮膜技術で色彩を制御) チタン(Titan 、titanium 、titanium)は、原子番号22の元素。元素記号は Ti。第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。 地球を構成する地殻の成分として9番目に多い元素(金属としてはアルミニウム、鉄、マグネシウムに次ぐ4番目)で、遷移元素としては鉄に次ぐ。普通に見られる造岩鉱物であるルチルやチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近(1950年代)である。 チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。この性質が金属チタンの貴金属に匹敵する耐食性や安定性をもたらしている。(水溶液中の実際的安定順位は、ロジウム、ニオブ、タンタル、金、イリジウム、白金に次ぐ7番目。銀、銅より優れる) 貴金属が元素番号第5周期以降に所属する重金属である一方でチタンのみが第4周期に属する軽い金属である(鋼鉄の半分)。.

新しい!!: スペースシャトルとチタン · 続きを見る »

ハンツビル

ハンツビル (Huntsville) は、アメリカ合衆国アラバマ州マディソン郡の郡庁所在地である。2000年現在の国勢調査で、この都市の人口は158,216人である。アパラチア山脈の南麓に位置し、周りは木々で囲まれる。.

新しい!!: スペースシャトルとハンツビル · 続きを見る »

ハードディスクドライブ

AT互換機用内蔵3.5インチHDD(シーゲイト・テクノロジー製) ハードディスクドライブ(hard disk drive, HDD)とは、磁性体を塗布した円盤を高速回転し、磁気ヘッドを移動することで、情報を記録し読み出す補助記憶装置の一種である。.

新しい!!: スペースシャトルとハードディスクドライブ · 続きを見る »

ハードウェア

ハードウェア (hardware) とは、システムの物理的な構成要素を指す一般用語である。日本語では機械、装置、設備のことを指す。ソフトウェアとの対比語であり、単に「ハード」とも呼ばれる。.

新しい!!: スペースシャトルとハードウェア · 続きを見る »

ハッブル宇宙望遠鏡

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、Hubble Space Telescope、略称:HST)は、地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。.

新しい!!: スペースシャトルとハッブル宇宙望遠鏡 · 続きを見る »

バラク・オバマ

バラク・フセイン・オバマ2世( 、1961年8月4日 - )は、アメリカ合衆国の政治家である。民主党所属。上院議員(1期)、イリノイ州上院議員(3期)、第44代アメリカ合衆国大統領を歴任した。 アフリカ系アフリカ系黒人とヨーロッパ系白人との混血=ムラートとしてアメリカ合衆国史上3人目となる民選上院議員(イリノイ州選出、2005年 - 2008年2008年アメリカ大統領選挙で当選後上院議員を辞任。)。また、アフリカ系、20世紀後半生まれ、ハワイ州出身者としてアメリカ合衆国史上初となる大統領である。 身長6フィート1インチ(約185.4cm)。2009年10月に現職アメリカ合衆国大統領としてノーベル平和賞を受賞する。.

新しい!!: スペースシャトルとバラク・オバマ · 続きを見る »

バイエルン州

バイエルン州(標準ドイツ語・バイエルン語:Freistaat Bayern)は、ドイツ連邦共和国の連邦州のひとつで、ドイツの南部に位置する。州都はミュンヘンである。 BMWとアウディの本社がある。また、農業機械銀行の発祥地である。.

新しい!!: スペースシャトルとバイエルン州 · 続きを見る »

ポンプ

井戸ポンプ(手押しポンプ) ポンプ(pomp)は圧力の作用によって液体や気体を吸い上げたり送ったりするための機械 特許庁。機械的なエネルギーで圧力差を発生させ液体や気体の運動エネルギーに変換させる流体機械である。喞筒(そくとう)ともいう。 動物の心臓も一種のポンプである。また、機械的なポンプのようにエネルギーの蓄積や移送を行う目的の仕組みに「ポンプ」の語を当てることがある(ヒートポンプなど)。 動作原理により、非容積型、容積型、特殊型に分類される。.

新しい!!: スペースシャトルとポンプ · 続きを見る »

メガバイト

メガバイト (megabyte) は、データの量やコンピュータの記憶装置の大きさを表す単位である。MBと略記される(Mbはメガビットの意味で用いられることが多い)。 メガは本来はSI接頭辞の1つであり、基本となる単位の10倍を意味するので、メガバイトは本来は10バイト(1000000バイト、すなわち1000キロバイト)となる。しかし、バイト・ビットに対しては、SI接頭辞を10の累乗倍ではなく 2.

新しい!!: スペースシャトルとメガバイト · 続きを見る »

モノメチルヒドラジン

モノメチルヒドラジン(Monomethylhydrazine, MMH)は、示性式 CH3-NH-NH2で表されるヒドラジン誘導体の有機化合物である。単にメチルヒドラジンとも呼ばれる。 キノコの一種シャグマアミガサタケの成分ギロミトリンが加水分解して生成することでも知られる。 ロケットエンジンの推進剤に燃料として使われる。適当な酸化剤(四酸化二窒素など)とともに用いると自己着火性を有しており、燃料バルブの開閉だけで推力の制御ができるため、人工衛星や宇宙船の姿勢制御用エンジン(スラスター)用に用いられる。 引火性、発火性があり、日本では消防法により危険物第5類(自己反応性物質)に指定されている。また肝臓・腎臓・腸・膀胱に障害を起こす。発癌性を持つことでも知られている。.

新しい!!: スペースシャトルとモノメチルヒドラジン · 続きを見る »

ランデブー (宇宙開発)

ランデブーまたはランデヴー(rendezvous)とは、宇宙空間において2機以上の宇宙船、または宇宙船と宇宙ステーションなどが速度を合わせ、同一の軌道を飛行し、互いに接近する操作のことである。両者が結合するドッキング操作を含める場合も、含めない場合もある。また、宇宙探査機が小惑星などに速度を合わせ、同一の軌道を飛行することもランデブーと呼ぶことがある。.

新しい!!: スペースシャトルとランデブー (宇宙開発) · 続きを見る »

ラップトップパソコン

ラップトップパソコンとは、コンピュータの折りたたまれた蓋がディスプレイを兼ねた、キーボードと本体が一体化した、机上で使用できる携帯(可搬)型のコンピュータ(パーソナルコンピュータ)である。.

新しい!!: スペースシャトルとラップトップパソコン · 続きを見る »

リチャード・ニクソン

リチャード・ミルハウス・ニクソン(Richard Milhous Nixon, 1913年1月9日 - 1994年4月22日)は、アメリカ合衆国の政治家。第37代アメリカ合衆国大統領。.

新しい!!: スペースシャトルとリチャード・ニクソン · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: スペースシャトルとリチウム · 続きを見る »

リフティングボディ

代表的なアメリカのリフティングボディ機であるX-24A。 リフティングボディ()は、極超音速での巡航を前提とした航空機、ないしはスペースプレーン等のような大気中を飛行することがある一部の宇宙機に使われる、機体を支える揚力を生み出すように空気力学的に工夫された形状を有する胴体のことである。遷音速から超音速域での飛行時に特に大きな抗力発生源となる通常の固定翼機型の翼を廃し、その分必要になる浮揚力を胴体から賄うために利用されることが多く、1960年代に開発されたアメリカの実験機M2シリーズやX-24などが本形態を採用した代表的機体である。.

新しい!!: スペースシャトルとリフティングボディ · 続きを見る »

ローリング

ーリング (rolling) とは、乗り物など前後・左右・上下が決まった物体が、前後の軸に対して回転(あるいは傾斜)すること。単にロール (roll) ともいい、船舶では横揺れという。なお、左右の軸まわりの回転がピッチング (pitching) またはピッチ (pitch)で、上下軸まわりの回転がヨーイング (yawing) またはヨー (yaw)と呼ぶ。 特に、航空機、船舶、自動車について言うことが多く、ロール量は角度で表される。ロール方向の動きに制限の少ない航空機では、90度、180度、360度ロールなども可能である。機体の中心軸の回転運動成分をローリング、その回転角度をロール角という。なお、路面、線路の傾き(カント)や、二輪車で車体を傾ける操作など、ロール方向の傾斜をバンク(bank)と呼ぶこともある。.

新しい!!: スペースシャトルとローリング · 続きを見る »

ロッキード・マーティン

ッキード・マーティン(Lockheed Martin、NYSE:)は、アメリカ合衆国の航空機・宇宙船の開発製造会社。1995年にロッキード社とマーティン・マリエッタ社が合併して現在のロッキード・マーティン社が生まれた。 ロッキード・マーティンは、ボーイング、BAEシステムズ、ノースロップ・グラマン、ジェネラル・ダイナミクス、レイセオンなどとともに、世界の主要な軍需企業である。ストックホルム国際平和研究所が発行するSIPRI Yearbookによると、軍需部門の売上高の世界ランキングは、1998年は1位、1999年は1位、2000年は1位、2001年は2位、2002年は2位、2003年は1位、2004年は2位、2005年は2位、2006年は2位、2007年は3位、2008年は2位、2009年は1位、2010年は1位である。 2012年現在で世界の最新鋭ステルス戦闘機であるF-22やF-35の開発・製造を行っていることで有名である。極秘先進技術設計チーム「スカンクワークス」が多数の傑作軍用機を生み出したことでも有名である。日本語では「ロッキード・マーチン」と表記されることもある。.

新しい!!: スペースシャトルとロッキード・マーティン · 続きを見る »

ロックウェル・インターナショナル

ックウェル・インターナショナル(Rockwell International )は、ウィラード・ロックウェルが設立した企業。ウィラードは1919年、トラックの車軸のための新しいベアリングシステムの発明を元に会社を興して財産を形成し、最終的にロックウェル・インターナショナルに育て上げた。.

新しい!!: スペースシャトルとロックウェル・インターナショナル · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

新しい!!: スペースシャトルとロケット · 続きを見る »

ロケットダイン

ットダイン(Rocketdyne)は、アメリカ合衆国の液体燃料ロケットエンジンの主要な設計製造業者。同社はその歴史の大部分でノースアメリカン社(NAA)と深い関わりを持っていた。NAA 社はロックウェル・インターナショナルと合併し、その後1996年12月にボーイング社に買収された。2005年2月、ボーイング社はロケットダイン社をプラット・アンド・ホイットニー社に売却することに合意し、2005年8月2日、その契約が履行され、(Pratt & Whitney Rocketdyne)となった。 2012年3月に、プラット・アンド・ホイットニー・ロケットダインの親会社であるユナイテッド・テクノロジーズ(UTC)がグッドリッチ社を取得するために一部事業の売却を行うことを発表し、プラット・アンド・ホイットニー・ロケットダインはGenCorpに売却されることになった。しかし、連邦取引委員会(FTC)の承認が遅れたため、この売却が完了したのは2013年半ばのことであった。2013年6月にFTCの承認が得られたため、プラット・アンド・ホイットニー・ロケットダインはGenCorpの傘下に入った。GenCorpは別のロケットエンジンメーカであるエアロジェット社を傘下に有していたため、ライバル企業であった両社は統合されてエアロジェット・ロケットダイン(Aerojet Rocketdyne)となった。.

新しい!!: スペースシャトルとロケットダイン · 続きを見る »

ロケットエンジンの推進剤

ットエンジンの推進剤(ロケットエンジンのすいしんざい)の記事では、ロケットエンジンないしロケットによる打上げのシステムにおける推進剤(プロペラント)に関する事項について述べる。.

新しい!!: スペースシャトルとロケットエンジンの推進剤 · 続きを見る »

ロシア

ア連邦(ロシアれんぽう、Российская Федерация)、またはロシア (Россия) は、ユーラシア大陸北部にある共和制及び連邦制国家。.

新しい!!: スペースシャトルとロシア · 続きを見る »

ヴァルター・ドルンベルガー

中のドルンベルガー(1947年) ヴァルター・ロベルト・ドルンベルガー(Walter Robert Dornberger, 1895年9月6日 – 1980年6月27日)は、ドイツの軍人、ロケット技術者。最終階級はドイツ国防軍少将。陸軍兵器局でロケット開発の責任者を務めた。第二次世界大戦後はアメリカ合衆国に渡った。.

新しい!!: スペースシャトルとヴァルター・ドルンベルガー · 続きを見る »

ボーイング

ボーイング(The Boeing Company)は、アメリカ合衆国に所在する世界最大の航空宇宙機器開発製造会社。1997年にマクドネル・ダグラス社を買収したため、現在アメリカで唯一の大型旅客機メーカーであり、ヨーロッパのエアバスと世界市場を二分する巨大企業である。また旅客機だけでなく、軍用機、ミサイル、宇宙船や宇宙機器などの研究開発・設計製造を行う。機体の設計に関して、有限要素法の設計手法の導入に先んじていて、その技術は車輌構体設計など他分野にも技術供与されており、世界の航空宇宙機器業界をリードしている。.

新しい!!: スペースシャトルとボーイング · 続きを見る »

ボーイング747

ボーイング747(Boeing 747)は、アメリカのボーイング社が開発・製造する大型旅客機のシリーズ。ジャンボジェット(Jumbo Jet)の愛称で知られる。世界初のワイドボディ機であり、大量輸送によってそれまで一般庶民にとって高嶺の花であった航空旅行、特に国外旅行の大衆化を可能にした画期的な機体であった。基本設計から半世紀が経過した現在においてもなお大型民間航空機の一角を占めており、最新型として747-8型が生産されている。.

新しい!!: スペースシャトルとボーイング747 · 続きを見る »

ボーイング777

ボーイング777(Boeing 777)は、アメリカのボーイング社が開発したワイドボディ双発ジェット機。 通称「トリプルセブン」 本項では以下、ボーイング製の旅客機については、「ボーイング」という表記を省略し、数字のみで表記する。たとえば「ボーイング767」であれば、単に「767」とする。.

新しい!!: スペースシャトルとボーイング777 · 続きを見る »

トン

トン(tonne, ton, 記号: t)は、質量の単位である。SI(国際単位系)ではなく、分・時・日、度・分・秒、ヘクタール、リットル、天文単位とともに「SI単位と併用される非SI単位」である(SI併用単位#表6 SI単位と併用される非SI単位)。 そのほか、質量以外の各種の物理量に対して使われるトンもある。.

新しい!!: スペースシャトルとトン · 続きを見る »

ヘルメット

ヘルメット (helmet) は、頭部を衝撃などから保護するためにかぶる防護帽もしくは兜のこと。.

新しい!!: スペースシャトルとヘルメット · 続きを見る »

ヘルベチカ

ヘルベチカ(Helvetica)は、1957年にスイス人タイプフェイスデザイナーの とエドゥアルト・ホフマン(Eduard Hoffmann)が発表したサンセリフのローマ字書体。簡素で落ち着いた書体でありながら説得力に富む力強さが特長で、用途を選ばない幅広い汎用性がある。現在最も使用される書体の一つとなっているほか、出版や広告の業界では必要不可欠な書体として知られる。 今日ではフォントとして誰でも手軽に利用でき、Macintoshでは OS に付属する標準フォントの一つとなり、iOS(8以前)ではシステムフォントである。 「ヘルベチカ」の名称は、ラテン語で「スイス」を意味する''Helvetia''(ヘルウェティア / ヘルヴェティア)の形容詞形であるHelvetica(ヘルウェティカ / ヘルヴェティカ)に由来する。つまり、ヘルベチカとは「スイスの」を意味する語である。.

新しい!!: スペースシャトルとヘルベチカ · 続きを見る »

ブラン (オービタ)

ブラン(Буран、Buran)は、ソ連の各設計局が開発した宇宙船(宇宙往還機)、ないしは同機を初代オービタとする打ち上げ計画(ブラン計画)である。 「ブラン」とは「吹雪」特に「ステップの猛吹雪」を意味するロシア語。ロシア語のカタカナ転写の方式の違いによる表記バリエーションにより、ブランのほかブラーンとも表記される。ブーランという表記は誤り。.

新しい!!: スペースシャトルとブラン (オービタ) · 続きを見る »

ブラン2.01

2.01はソ連のブラン計画における3機目のスペースシャトル。シリアルナンバーは11F35 K3 。2.01はバイカル湖にちなんでバイカル(Baikal)と名づけられる予定だったとされる。ブラン2.01、OK-2.01、シャトル2.01などと呼ばれる。 2.01の組み立てはブラン計画終了時には完成しておらず、30から50パーセントの段階で中止され現在も未完成のままである。.

新しい!!: スペースシャトルとブラン2.01 · 続きを見る »

ブラン2.02

2.02はブラン計画4機目のオービター。非公式ながら、「タイフーン」の名称を持つ。OK-2.02、ブラン2.02、シャトル2.02とも呼ばれる。 1993年ブラン計画が中止されたとき、2.02の組み立ては初期段階(10-20%)であった。その後、未完成の2.02は製造工場(Tushino Machine Building Plant)で数年そのままにされた後、部分的に分解されてハンガーの外に移された。現在は野外に晒されたまま横たわっている。 多くの2.02のタイルが剥がされ、インターネットオークションに出品されている。.

新しい!!: スペースシャトルとブラン2.02 · 続きを見る »

ブラン2.03

2.03はソ連のブラン計画5機目のオービター。OK-2.03、シャトル2.03、ブラン2.03と呼ばれる。 2.03はその名の通り、第2世代の3機目にあたる。2.03はソビエトのシャトル計画が中止された1993年当時、ほとんど組み立てが進行していなかった。それまでに作られた部分もその直後に廃棄されたため、現在は何一つ残っていない。 2.03の存在した期間が極めて短いため、実質的に2.03の写真は存在しないとされる。また、名前も公式、非公式問わず与えられなかった。.

新しい!!: スペースシャトルとブラン2.03 · 続きを見る »

プチーチュカ

プチーチュカ(Птичка, IPA:、小鳥の意)はブラン計画における2機目のスペースシャトルにつけられた非公式の名前。正式な名称は1.02またはブラン 1.02()であった。ブーリャ(Буря、嵐の意)とも非公式に呼ばれていた。 プチーチュカはすべてのブラン計画におけるシャトルオービターの非公式なニックネームでもあった。.

新しい!!: スペースシャトルとプチーチュカ · 続きを見る »

プラントル・グロワートの特異点

プラントル・グロワートの特異点(プラントル・グロワートのとくいてん、Prandtl-Glauert Singularity)とは、ルートヴィヒ・プラントルとが見いだしたにおける特異点のこと。.

新しい!!: スペースシャトルとプラントル・グロワートの特異点 · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: スペースシャトルとプログラミング言語 · 続きを見る »

プログラム (コンピュータ)

ンピュータプログラム(英:computer programs)とは、コンピュータに対する命令(処理)を記述したものである。コンピュータが機能を実現するためには、CPUで実行するプログラムの命令が必要である。 コンピュータが、高度な処理を人間の手によらず遂行できているように見える場合でも、コンピュータは設計者の意図であるプログラムに従い、忠実に処理を行っている。実際には、外部からの割り込み、ノイズなどにより、設計者の意図しない動作をすることがある。また設計者が、外部からの割り込みの種類を網羅的に確認していない場合もある。.

新しい!!: スペースシャトルとプログラム (コンピュータ) · 続きを見る »

パラシュート

アメリカの空挺歩兵 パラシュート降下の瞬間 陸上自衛隊の60式空挺傘手前の主傘を背負い、奥の予備傘を身体前部に装着する。 ドラッグシュートを用いたスペースシャトルの着陸 イタリアの無名人士による最古のパラシュート図版(1470年) パラシュート(Parachute)は、傘のような形状で空気の力を受けて速度を制御するもの。この言葉はイタリア語の「守る」 (parare) とフランス語の「落ちる」 (chute) を組み合わせた造語である。落下傘(らっかさん)という和訳語も存在する。.

新しい!!: スペースシャトルとパラシュート · 続きを見る »

パイロット (航空)

航空の領域におけるパイロット(pilot)とは、航空機に乗り込んでこれを操縦する人のことである。日本語では操縦者や航空機操縦士(あるいは単に操縦士)などと呼ぶ。 英語圏でも基本的に pilot と呼ぶが、一部の海軍航空隊では「水先人」の意味での pilot との混同を避けるため aviator アビエーター と呼び分けている。 世界全体では、2010年時点の国交省が採用した統計でおよそ46万3,000人のパイロットがいる、とされた。パイロット数というのは米国が特に多く、米国の2014年末の統計で男性パイロットが554,177人、女性パイロットが39,322人だった。(なお2010年の統計でアジア太平洋地域のパイロットはおよそ5万人であった。日本では2016~17年ごろで、主要航空会社におよそ五千数百名、格安航空会社(LCC)におよそ数百名、といった人数であった) ある飛行機の中で複数乗っている場合は、通常、最も階級が高い人物が機長(キャプテン)として全体の指揮を執る。 無人航空機の操縦者は、機体に乗り込まないので通常は「パイロット」と呼ばずオペレーターと呼ばれる。.

新しい!!: スペースシャトルとパイロット (航空) · 続きを見る »

ヒューストン

ヒューストン(Houston)は、アメリカ合衆国テキサス州南東部に位置する都市。2,099,451人(2010年国勢調査)の人口を抱えるテキサス州最大、全米第4の都市である.

新しい!!: スペースシャトルとヒューストン · 続きを見る »

ヒドラジン

ヒドラジン (hydrazine) は、無機化合物の一種で、分子式 N2H4と表される弱塩基。 アンモニアに似た刺激臭を持つ無色の液体で、空気に触れると白煙を生じる。水に易溶。強い還元性を持ち、分解しやすい。引火性があり、ロケットや航空機の燃料として用いられる。 常温での保存が可能であるため、F-16戦闘機の非常用電源装置(EPU)やロシアなどのミサイルの燃料としても広く用いられており、また人工衛星や宇宙探査機の姿勢制御用推進器の燃料としても使われている。プラスチック成形時の発泡剤、エアバッグ起爆剤、各種脱酸素剤として広く使用され、特に火力・原子力発電所用高圧ボイラーの防食剤として使用されている。水加ヒドラジンは水素に代わる燃料電池の燃料としても模索されている。 だが人体へは、気化吸引、皮膚への接触ともに腐食をもたらす。また中毒症状をおこす。「毒物及び劇物取締法」により毒物に指定されている。 水と共沸し、55 mol%のヒドラジンを含む混合物を与える。化学実験で用いる際は通常、抱水ヒドラジン(ヒドラジン一水和物、N2H4•H2O)が用いられる。.

新しい!!: スペースシャトルとヒドラジン · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: スペースシャトルとビット · 続きを見る »

ビジョン・フォー・スペース・エクスプロレーション

ビジョン・フォー・スペース・エクスプロレーション(Vision for Space Exploration:VSE)は、2004年1月14日に当時のジョージ・W・ブッシュ大統領により発表された、アメリカ合衆国の宇宙探査計画。 2010年6月にバラク・オバマ政権の宇宙政策によって方針変更が行われた。.

新しい!!: スペースシャトルとビジョン・フォー・スペース・エクスプロレーション · 続きを見る »

ピッチング

ピッチング (pitching) とは、乗り物など前後・左右・上下が決まった物体が、左右を軸として(いわゆる「上下に」)回転すること。ピッチ (pitch) とも。なお、前後を軸にした回転がローリング (rolling) またはロール (roll)、上下を軸にした回転がヨーイング (yawing) またはヨー (yaw) である。 主に、航空機や船舶について言うことが多い。.

新しい!!: スペースシャトルとピッチング · 続きを見る »

ピトー管

ピトー管(ピトーかん、)は流体の流れの速さを測定する計測器である。発明者であるにちなんで命名され、ヘンリー・ダルシーにより改良された。航空機の速度計や風洞などに使用される。 アンリ・ピトーは1732年11月12日にパリ科学アカデミーでこの流速を直接計測できる発明を発表した。当時ベルヌーイの定理はまだ発表されていなかったため、彼はまったく直感的な根拠によってこの装置を利用した。ピトー管の動作とその使用における合理的な理論をベルヌーイの定理に基づいて調査したのはジョン・エアレイで、1913年のことであった。.

新しい!!: スペースシャトルとピトー管 · 続きを見る »

テストパイロット

テストパイロット(Test pilot)とは、新型あるいは改造型の航空機で特定の操縦を行い、その結果を測定し設計を評価する飛行士である。自衛隊では試験飛行操縦士と称する。 フランシス・エヴァンズ (USMC) は、スピンから回復する最適の方法を調査した (1917) テストパイロットは、軍事組織や(多くは航空宇宙関連の)民間企業に所属していることが多い。特に軍用機のテストは、平時では最も危険でやりがいのある飛行だと考えられ、つまり軍用航空の頂点に位置している。1950年代には、およそ1週間に1人の割合でテストパイロットが死亡していたが、1960年代以降、航空機技術の成熟、地上テストの向上、シミュレーションの導入などによって危険は急速に減少し、最近では実験機のテストを無人で行うことが多くなってきている。しかし、その他の航空機よりも実験機の操縦がはるかに危険であることに変わりはない。.

新しい!!: スペースシャトルとテストパイロット · 続きを見る »

ディスカバリー (オービタ)

ディスカバリー(Space Shuttle Discovery、NASA型名:OV-103)はスペースシャトルのオービタである。コロンビア、チャレンジャーに続いて、1984年8月30日に打ち上げられた3機目のオービタである。.

新しい!!: スペースシャトルとディスカバリー (オービタ) · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: スペースシャトルとデジタル · 続きを見る »

フライ・バイ・ワイヤ

フライ・バイ・ワイヤ(Fly by wire, FBW と略される)とは、航空機等の操縦・飛行制御システムの1種。直訳すると「電線による飛行」。.

新しい!!: スペースシャトルとフライ・バイ・ワイヤ · 続きを見る »

ファルコン9

ファルコン9()はアメリカ合衆国の民間企業スペースX社により開発され、打ち上げられている2段式の商業用打ち上げロケット。低周回軌道に22,800 kgの打ち上げ能力を持つ中型クラスのロケット。 2010年6月4日に初打ち上げが行われて成功した。 徹底した低コスト化が図られたロケットであり、打ち上げ価格は6,200万ドル(約66億円)と100億円を超える同規模同世代のロケットと比較して遥かに安価で、商業衛星市場において大きなシェアを獲得している。 その大きなシャアを示すように、2017年には年間18回の打ち上げに成功しており、ファルコン9だけで中国(18回)やロシア(21回)等の一国の打ち上げ規模に匹敵する。 さらに、2018年には年間30回程度打ち上げることを目指すとイーロン・マスク氏(CEO)とグウィン・ショットウェル氏(COO)は述べている。 ファルコン9ロケットの名前は、スターウオーズのミレニアム・ファルコン号に由来しており、ファルコンロケットシリーズの後ろにつく1と9の数字は1段エンジンの数を表す。.

新しい!!: スペースシャトルとファルコン9 · 続きを見る »

フィート

フィート、フート(計量法上の表記)又はフット(複: feet, 単: foot)は、ヤード・ポンド法における長さの単位である。様々な定義が存在したが、現在では「国際フィート」が最もよく用いられており、正確に 0.3048 メートルである。1フィートは12インチであり、3フィートが1ヤードである。 日本では、他のヤード・ポンド法の単位と同様、一定の場合に限り、当分の間、使用することができる。.

新しい!!: スペースシャトルとフィート · 続きを見る »

フェルト

色加工されたフェルトのシート フェルトの表面を拡大したところ フェルト(felt)とは、ヒツジやラクダなどの動物の毛を、薄く板状に圧縮して作るシート状製品の総称。不織布。フエルトとも表記する。化学繊維を使った製品もある。.

新しい!!: スペースシャトルとフェルト · 続きを見る »

フェイルセーフ

フェイルセーフ(フェールセーフ、フェイルセイフ、fail safe)とは、なんらかの装置・システムにおいて、誤操作・誤動作による障害が発生した場合、常に安全側に制御すること。またはそうなるような設計手法で信頼性設計のひとつ。これは装置やシステムが『必ず故障する』ということを前提にしたものである。.

新しい!!: スペースシャトルとフェイルセーフ · 続きを見る »

フクロウ

フクロウ(梟、鴞、Strix uralensis)は、鳥綱フクロウ目フクロウ科フクロウ属に分類される鳥類。 夜行性であるため人目に触れる機会は少ないが、その知名度は高く樋口 (2007)、22頁、「森の物知り博士」、「森の哲学者」などとして人間に親しまれている。木の枝で待ち伏せて音もなく飛び、獲物に飛び掛かることから「森の忍者」と称されることがある樋口 (2007)、17頁。.

新しい!!: スペースシャトルとフクロウ · 続きを見る »

ドラゴン (宇宙船)

ドラゴン()は、ファルコン9ロケットによって打ち上げられる宇宙船である。この宇宙船は、アメリカ航空宇宙局 (NASA) の商業軌道輸送サービス (COTS) の契約に則り、スペースX社が開発しているもので、国際宇宙ステーション (ISS) への物資補給を目的としている。2010年12月に初の試験飛行を行い、軌道を2周したのち帰還し、商業的に開発され運用された民間宇宙機としては史上初となる回収に成功した。2012年5月には、同様に民間機としては史上初となるISSへのドッキングにも成功している。 ドラゴンの耐熱シールドは、月と火星からの帰還時の大気圏再突入速度にも耐えられるよう設計されている。開発費はNASAの商業軌道輸送サービス計画の予算の一部から拠出されている。 ドラゴンの名前は、ピーター・ポール&マリーの楽曲"Puff The Magic Dragon"(日本では「パフ」のタイトルで童謡として知られており、同曲を元にした絵本「魔法のドラゴン パフ」も出版されている)に由来している。イーロン・マスクが2002年にスペースX社を設立した際、多くの批評家はこの宇宙船の構想を実現不能なアイディアだと考えていた。そこでイーロンは、このフィクションに出てくるドラゴンを宇宙船の名前に付けたと語っている。.

新しい!!: スペースシャトルとドラゴン (宇宙船) · 続きを見る »

ドル

ドル(dollar)は通貨単位のひとつであり、複数の国で使用されている。記号は$。漢字では、字体の似た「弗」を宛てる。.

新しい!!: スペースシャトルとドル · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: スペースシャトルとドイツ · 続きを見る »

ニューメキシコ州

ニューメキシコ州(State of New Mexico、Nuevo México)は、アメリカ合衆国南西部にある州である。州の北はコロラド州に接し、東側にはオクラホマ州とテキサス州に、西側はアリゾナ州に、南側はテキサス州およびメキシコとの国境に接している。また州の北西にはフォー・コーナーズがあり、そこでユタ州とも一点で接している。面積ではアメリカ合衆国で5番目に大きいが、人口では36番目であり、人口密度では45番目になっている。美しい景観から「Land of Enchantment(魅惑/魔法の土地)」と通称される。 州都は1607年にスペイン人が建設した歴史ある町サンタフェ市である。.

新しい!!: スペースシャトルとニューメキシコ州 · 続きを見る »

ニュートン

ニュートン(newton、記号: N)は、 国際単位系 (SI)における力の単位。1ニュートンは、1kgの質量を持つ物体に1m/s2の加速度を生じさせる力。名称は古典力学で有名なイギリスの物理学者アイザック・ニュートンにちなむものである。.

新しい!!: スペースシャトルとニュートン · 続きを見る »

ニール・アームストロング

ニール・オールデン・アームストロング(Neil Alden Armstrong, 1930年8月5日 - 2012年8月25日)は、アメリカ合衆国の海軍飛行士、テスト・パイロット、宇宙飛行士、大学教授である。人類で初めて月面に降り立った。大統領自由勲章(1969年)、議会宇宙名誉勲章(1978年)、議会名誉黄金勲章(2009年)受章。.

新しい!!: スペースシャトルとニール・アームストロング · 続きを見る »

ホッパー (宇宙船)

ホッパーは欧州宇宙機関が計画している先進的な形態の有人宇宙往還機。この計画はEADS社のフェニックス飛行実験で試験されている。形状はリフティングボディである。シャトルの試作機は欧州再使用ロケット(RLV)計画で検討された複数の案の一つである。 ホッパーは現在の有人宇宙機の中で最も経済的になると宣伝されている。実用化は2015年から2020年までに行われるのではないかと予想される | 10 May 2004。ホッパーは全長4kmのマグネティックトラックで打ち上げられ脱出速度に加速し、一般の発射よりも安い値段での実験を可能にする。 21世紀の初期で、最初の独立した宇宙での非軍事的試みであり、国際宇宙ステーション計画の重要な部分を引き受けることができるとしている。このプロジェクトはエルメス宇宙機のように断念されると考えられていた。.

新しい!!: スペースシャトルとホッパー (宇宙船) · 続きを見る »

分離ボルト

分離ボルト(ぶんりボルト、英語:Explosive Bolt)とは火工品の一種で別名爆裂ボルト、爆砕ボルト、爆発ボルトとも呼ばれる。 ボルトの中を中空にしてそこに爆薬を充填し、電気雷管を埋め込んだ物である。起爆すると切断面から断裂し真っ二つに折れることで部品の固定を解く。 周囲を傷つけないように破片の飛び散らないタイプもある。爆轟型の他に燃焼型もあるが海外では動作が確実な爆轟型が大半であり、燃焼型は主に爆薬を用いることが法規制上困難な場合などに用いられる。.

新しい!!: スペースシャトルと分離ボルト · 続きを見る »

嘉手納飛行場

AGM-119ペンギン対艦ミサイル発射訓練。2002年7月23日。 嘉手納基地に配備されているF-15C戦闘機 嘉手納飛行場(かでなひこうじょう、Kadena airfield)は、沖縄県中頭郡嘉手納町・沖縄市・中頭郡北谷町にまたがるアメリカ空軍の空軍基地。在日アメリカ空軍(第5空軍)の管轄下にある。嘉手納空軍基地(かでなくうぐんきち、Kadena Air Base=米軍内での正式な呼称)、アメリカ空軍嘉手納基地(アメリカくうぐんかでなきち)、あるいは単に嘉手納基地(かでなきち)と呼ばれることが多いが、日本の公的資料では「嘉手納飛行場」と呼称されている。 総面積は、約19.95km2。3,700mの滑走路2本を有し、200機近くの軍用機が常駐する極東最大の空軍基地である。また、在日空軍最大の基地である。滑走路においては成田国際空港(4,000mと2,500mの2本)や関西国際空港(3,500mと4,000mの2本)と遜色なく、日本最大級の飛行場の一つということになる。面積においても、日本最大の空港である東京国際空港(羽田空港)の約2倍である。かつてはスペースシャトルの緊急着陸地に指定されていた。 過去のごく一時期であるが日本航空など民間旅客機の発着も行われていた。 基地司令は第18航空団司令が兼務している。.

新しい!!: スペースシャトルと嘉手納飛行場 · 続きを見る »

アナログ

アナログ(analog、 アナローグ)は、連続した量(例えば時間)を他の連続した量(例えば角度)で表示すること。デジタルが連続量をとびとびな値(離散的な数値)として表現(標本化・量子化)することと対比される。時計や温度計などがその例である。エレクトロニクスの場合、情報を電圧・電流などの物理量で表すのがアナログ、数字で表すのがデジタルである。元の英語 analogy は、類似・相似を意味し、その元のギリシア語 αναλογία は「比例」を意味する。.

新しい!!: スペースシャトルとアナログ · 続きを見る »

アポロ12号

アポロ12号はアメリカ合衆国のアポロ計画における6番目の飛行であり、H計画と呼ばれる月面への着陸を行う2度目の飛行であった。フロリダ州のケネディ宇宙センターから発射されたのは1969年11月14日のことで、アポロ11号から4ヶ月後のことだった。船長ピート・コンラッド (Pete Conrad) と月着陸船操縦士アラン・ビーン (Alan Bean) は1日と7時間にわたって月面で船外活動を行い、その間司令船操縦士リチャード・ゴードン (Richard F. Gordon, Jr.) は月周回軌道上にとどまっていた。着陸船の月面での着陸地点は、嵐の大洋の南部であった。 史上初の月面着陸を行った11号とは違い、コンラッドとビーンは1967年4月20日にサーベイヤー3号が着陸した目標地点に正確に降り立った。この飛行ではアポロ計画で初めてカラーのテレビカメラが携行されたが、ビーンが誤って太陽にレンズを向けたために機器が故障し、中継には失敗した。船外活動は2回行われ、そのうちの1回で飛行士はサーベイヤーから機器を取り外し、地球に持ち帰った。宇宙船は11月24日に無事着水し、計画は成功裏に終了した。.

新しい!!: スペースシャトルとアポロ12号 · 続きを見る »

アポロ計画

Apollo program insignia アポロ計画(アポロけいかく、Apollo program)とは、アメリカ航空宇宙局(NASA)による人類初の月への有人宇宙飛行計画である。1961年から1972年にかけて実施され、全6回の有人月面着陸に成功した。 アポロ計画(特に月面着陸)は、人類が初めてかつ現在のところ唯一、有人宇宙船により地球以外の天体に到達した事業である。これは宇宙開発史において画期的な出来事であっただけではなく、人類史における科学技術の偉大な業績としてもしばしば引用される。.

新しい!!: スペースシャトルとアポロ計画 · 続きを見る »

アメリカ合衆国の国旗

アメリカ合衆国の国旗は、一般に星条旗(せいじょうき、the Stars and Stripes)と呼ばれる。正式名は合衆国旗(がっしゅうこくき、Flag of the United States)。古き栄光(Old Glory)の別名もある。.

新しい!!: スペースシャトルとアメリカ合衆国の国旗 · 続きを見る »

アメリカ合衆国大統領

アメリカ合衆国大統領(アメリカがっしゅうこくだいとうりょう、, 略:"POTUS")は、アメリカ合衆国の国家元首であり行政府の長である。現職は2017年1月20日より第45代ドナルド・トランプが在任。 アメリカ合衆国大統領選挙(以下「大統領選挙」)によって選出される。.

新しい!!: スペースシャトルとアメリカ合衆国大統領 · 続きを見る »

アメリカ合衆国上院

アメリカ合衆国上院(アメリカがっしゅうこくじょういん、)は、アメリカ合衆国議会を構成する二院アメリカ合衆国憲法 第1条及び修正第17条のうち、上院にあたる議院である。 古代ローマの (元老院)が語源である。 を直訳した場合は合衆国元老院(がっしゅうこくげんろういん)となるが、日本語では通常上院(じょういん)と記される。.

新しい!!: スペースシャトルとアメリカ合衆国上院 · 続きを見る »

アメリカ合衆国議会

アメリカ合衆国議会(アメリカがっしゅうこくぎかい、United States Congress)は、アメリカ合衆国の連邦政府の立法府である。連邦議会(Congress)とも呼ばれ、アメリカ合衆国憲法の第1条により定義される。上院及び下院の二院制であるアメリカ合衆国憲法 第1条及び修正第14条、修正第17条。なお、解散はない。.

新しい!!: スペースシャトルとアメリカ合衆国議会 · 続きを見る »

アメリカ国防総省

アメリカ合衆国国防総省(アメリカがっしゅうこくこくぼうそうしょう、、略称:DoD)は、アメリカ合衆国の国防省である。アメリカ軍の七武官組織のうち、沿岸警備隊、アメリカ公衆衛生局士官部隊、合衆国海洋大気局士官部隊を除く陸軍、海軍、空軍、海兵隊の4つの軍を傘下に収める。陸海空軍の各省の統括組織であるため、日本では「国防総省」と訳されることが多いが、単に「国防省」とされることもある。2015年現在、同国の官庁の中で最大規模の組織となっている。 本庁舎は、五角形の形をしていることからペンタゴンと呼ばれている。アメリカ合衆国大統領の官邸組織がホワイトハウスと呼ばれるように、ペンタゴンという名称自体が国防総省を指す呼称となっている。.

新しい!!: スペースシャトルとアメリカ国防総省 · 続きを見る »

アメリカ空軍

アメリカ空軍(アメリカくうぐん、United States Air Force, 略称:USAF(ユサフ))は、アメリカ軍の航空部門である。アメリカ合衆国空軍、あるいは単に合衆国空軍、ほかに米空軍とも呼ばれる。任務は「アメリカ合衆国を防衛し、航空宇宙戦力によってその国益を守ること」である。.

新しい!!: スペースシャトルとアメリカ空軍 · 続きを見る »

アメリカ航空宇宙学会

アメリカ航空宇宙学会(アメリカこうくううちゅうがっかい、英称: American Institute of Aeronautics and Astronautics、略称: AIAA)は、アメリカ合衆国の航空宇宙工学とその関連分野の学会である。.

新しい!!: スペースシャトルとアメリカ航空宇宙学会 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: スペースシャトルとアメリカ航空宇宙局 · 続きを見る »

アメリカ航空諮問委員会

アメリカ航空諮問委員会(アメリカこうくうしもんいいんかい、National Advisory Committee for Aeronautics、NACA)は、1915年3月3日に設立されたアメリカ合衆国連邦政府の機関の1つである。航空工学の研究の請負、推進、制度化等を担う。1958年10月1日にこの組織は解体され、資産や人員は、新設されたアメリカ航空宇宙局(National Aeronautics and Space Administration、NASA)に移った。頭字語のNACAは、アクロニムの「ナカ」ではなく、アルファベットごとに区切って「エヌエーシーエー」と読む。NACAの成果は、今日の航空機にも用いられている。.

新しい!!: スペースシャトルとアメリカ航空諮問委員会 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: スペースシャトルとアルミニウム · 続きを見る »

アルミニウム合金

アルミニウム合金(アルミニウムごうきん、)は、アルミニウムを主成分とする合金である。アルミニウムには軽いという特徴がある一方、純アルミニウムは軟らかい金属であるため、銅(Cu)、マンガン(Mn)、ケイ素(Si)、マグネシウム(Mg)、亜鉛(Zn)、ニッケル(Ni)などと合金にすることで強度など金属材料としての特性の向上が図られる。アルミニウム合金を加工する場合、大きく分けて展伸法と鋳造法が採用される。 アルミニウム合金の軽さと強度を応用した例として、航空機材料としてのジュラルミンの利用が挙げられる。ジュラルミンはAl-Zn-Mg-Cu系のアルミニウム合金である。 アルミニウム合金は高い強度を持つ反面、溶接・溶断は特に難しく、用途変更に応じた改造や、破損の際の修繕は鋼などに比べて困難である。.

新しい!!: スペースシャトルとアルミニウム合金 · 続きを見る »

アルタイル (月面着陸機)

アルタイルまたはアルテア、旧称月面接近区画は、アメリカ合衆国のNASAがコンステレーション計画で使用することを構想していた、月着陸用のランダーである。同計画は、2019年までに宇宙飛行士を月に着陸させることを目標にしていた。 アルタイルは月面短期滞在や長期滞在などの飛行で使用されるはずだったが、2010年2月1日、オバマ大統領は2011年度予算でコンステレーション計画を中止する意向を表明した。.

新しい!!: スペースシャトルとアルタイル (月面着陸機) · 続きを見る »

アレスI

アレスI(Ares I)は、アメリカ航空宇宙局(NASA)のコンステレーション計画で使用される予定だった2段式の有人使い捨て型ロケットである。コンステレーション計画の中止に伴い開発が中止された。当初は人員打ち上げ機(Crew Launch Vehicle:CLV)と呼ばれていた。ギリシャ神話のアレス(ローマ神話のマルスと同一)から命名された。英語の発音はエアリーズ-ワンに近い。.

新しい!!: スペースシャトルとアレスI · 続きを見る »

アレスIV

150px アレスIV()は、NASAがコンステレーション計画の一環としてかつて開発計画を進めていた、大重量物打ち上げロケットのアレスシリーズの一タイプである。 アレスIVは有人打ち上げ用のアレスI (Crew Launch Vehicle, CLV) と、貨物打ち上げ用のアレスV (Cargo Launch Vehicle, CaLV) の中間の位置づけで開発を検討されていたロケットだったが、後に計画から除外された。その後コンステレーション計画が中止されたため、アレスIとアレスVの開発も中止されている。.

新しい!!: スペースシャトルとアレスIV · 続きを見る »

アレスV

アレスV (Ares V) は、アメリカ航空宇宙局 (NASA) のコンステレーション計画で使用される予定だった2段式の貨物打ち上げ用使い捨て型ロケットである。2019年の初打ち上げを目指して開発することが計画されていたが、コンステレーション計画の中止に伴い開発が中止された。当初は貨物ロケット (CaLV) と呼ばれていた。ギリシャ神話から名づけられ、英語の発音はエアリーズ-ファイブに近い。 2010年4月15日、オバマ大統領がケネディ宇宙センターで、2015年までに30億ドルをかけてアレスVに変わる新たな大重量打ち上げロケットの設計をする計画があることを発表し、2011年9月にNASAがスペース・ローンチ・システムの開発と2017年の初打ち上げを発表した。.

新しい!!: スペースシャトルとアレスV · 続きを見る »

アンドロジナスドッキング機構

アンドロジナスドッキング機構、またはアンドロジナス接続システム(、)とは、ミール宇宙ステーションや国際宇宙ステーションで使用されているである。これはスペースシャトル・オービターがISSに係留されるために、または、基本機能モジュール・ザーリャが与圧結合アダプタ (PMA) を介してISSのアメリカ側モジュールと接続されるために使われている。これと互換性のある接続システムは中国の神舟宇宙船にも使われていて、将来において神舟号がISSとドッキングできるようにしている。.

新しい!!: スペースシャトルとアンドロジナスドッキング機構 · 続きを見る »

アンタレス (ロケット)

アンタレス(、アンタリーズ)はアメリカ合衆国のオービタル・サイエンシズ社(OSC、2015年以降オービタルATK)により開発され、打ち上げられている中型ロケット。2013年4月21日に初打ち上げが行われて成功した。 2011年12月に計画名のトーラスIIが、さそり座の1等星アンタレスにちなんでアンタレス (Antares) に名称変更されることになったと発表された。同社のロケットは、Pegasus, Taurus, Minotaurというようにギリシャ神話にちなんで命名されていた。.

新しい!!: スペースシャトルとアンタレス (ロケット) · 続きを見る »

アームストロング飛行研究センター

アームストロング飛行研究センター(アームストロングひこうけんきゅうセンター、Armstrong Flight Research Center、AFRC)は、アメリカ合衆国のエドワーズ空軍基地内にある、NASAによって運営される航空研究センターである。機関名はテストパイロットとしてエドワース空軍基地に所属した後に、アポロ11号で人類初の月面着陸を行った、元宇宙飛行士のニール・アームストロングに因む。この研究センターはXプレーンを始めとする高速飛行の研究、開発で知られる。 旧名は、航空科学者でNASA副長官だったヒュー・ラティマー・ドライデンに因んだドライデン飛行研究センター(Dryden Flight Research Center)であったが、2014年1月16日にバラク・オバマ大統領が現在の名称へと改名する法案に署名し、2014年3月1日付けで改称された。この名称変更にあたっては、ドライデン飛行研究センター内の西部航空試験場を「NASA ヒュー・L.

新しい!!: スペースシャトルとアームストロング飛行研究センター · 続きを見る »

アトランティス (オービタ)

アトランティス(Space Shuttle Atlantis、NASA型名:OV-104)は、NASA スペースシャトルを構成する往還船モジュール=オービタとして計5隻建造された姉妹船(sister ships)の4番船である。船名「アトランティス」は、1931年から1964年までウッズホール海洋研究所で使用された調査船に由来する。 1985年10月3日にSTS-51-Jにて初飛行を行った。 2011年7月8日から7月21日までのSTS-135が最終飛行で、スペースシャトル計画における最後の飛行ともなった。 1995年にはロシアの宇宙ステーション「ミール」の修理のために、米露の宇宙船が1975年以来初めてドッキングした。 改良により、実用シャトル初番船「コロンビア」よりも3トン軽量化され、建造期間も短縮されている。 事故で失われた「チャレンジャー」とともに、日本人宇宙飛行士が搭乗することなく退役した。 2011年に最後の飛行を終えて退役した。その後はケネディ宇宙センターの組立棟に保管されていたが、2012年11月に展示施設に輸送された。2013年7月より一般公開されている。.

新しい!!: スペースシャトルとアトランティス (オービタ) · 続きを見る »

アビオニクス

アビオニクス(Avionics, エイヴィオニクス)とは、航空機に搭載され飛行のために使用される電子機器のこと。.

新しい!!: スペースシャトルとアビオニクス · 続きを見る »

イントレピッド海上航空宇宙博物館

イントレピッド海上航空宇宙博物館(イントレピッド かいじょう こうくう うちゅう はくぶつかん Intrepid Sea, Air & Space Museum)はニューヨーク市マンハッタンにある博物館。アメリカ海軍で使用されていた航空母艦イントレピッドを利用したものであり、艦船や航空機の展示を行っている。案内書によっては、「イントレピッド海洋航空宇宙博物館」と書かれている場合もある。.

新しい!!: スペースシャトルとイントレピッド海上航空宇宙博物館 · 続きを見る »

インド洋

インド洋(印度洋、インドよう、英:Indian Ocean、羅:Oceanus Indicus オーケアヌス・インディクス)は、太平洋、大西洋と並ぶ三大洋の一つである。三大洋中最も小さい。面積は約7355万平方kmである。地球表面の水の約20パーセントが含まれる。インド洋の推定水量は292131000km³である。「インド洋」の名はインドに由来する。.

新しい!!: スペースシャトルとインド洋 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: スペースシャトルとイオン · 続きを見る »

エルメス (宇宙船)

ルメス(ヘルメス)は、フランス、後に欧州宇宙機関 (ESA) がかつて計画していた再利用型の有人宇宙往還機。いわゆる欧州版スペースシャトルといわれるもの。 1980年代よりフランスの宇宙機関・フランス国立宇宙研究センターが独自に計画していたが、欧州宇宙機関の発足と、独自開発には予算がかかりすぎることから、欧州の共同開発という形をとった。全長は15メートルほど、乗組員は2~3名で、打ち上げ用に新たに開発された「アリアン5型ロケット」のペイロード(積荷部分)に連結して発射するもので、すでに様々な青写真は出来上がっており、国際宇宙ステーションにもこれで参加することも視野に入れていた。しかし、1990年代に欧州全体に吹き荒れた不景気によってESAは資金難となり、多額の開発費がかかるこの計画を断念した。打ち上げ用に開発した大型ロケット「アリアン5」は、その巨大な打ち上げ能力を持って、アリアンスペース社の主力ロケットとなり、大型商業衛星の打ち上げを行っている。またESAは、国際宇宙ステーションにはアメリカ合衆国のスペースシャトルのほか、欧州補給機を使用して参加している。.

新しい!!: スペースシャトルとエルメス (宇宙船) · 続きを見る »

エルパソ (テキサス州)

ルパソ(El Paso 、スペイン語で「峠」の意)は、アメリカ合衆国テキサス州最西端に位置する都市。メキシコとの国境となっているリオグランデ川の北東岸、シウダー・フアレスの対岸に立地し、市の西と北はニューメキシコ州との州境に接する。ヒューストンとロサンゼルスのほぼ中間にあり、そのいずれからも1,100km前後の距離である。また、州都オースティンやダラス・フォートワースよりもアルバカーキやフェニックスに近く、等時帯も山岳部標準時/夏時間に属している。人口は649,121人(2010年国勢調査).

新しい!!: スペースシャトルとエルパソ (テキサス州) · 続きを見る »

エレボン

レボン エレボン(elevon)は飛行機の操縦に用いる動翼の一つである。 無尾翼機(水平尾翼を有しない航空機)において用いられる。補助翼(aileron)と昇降舵(elevator)の役割を兼ね備えたものであり、語自体も二つの語を組み合わせた造語である。 主翼後縁に取り付けられており、左右の動翼を同一の方向に動かすことでエレベーター(昇降舵)として、それぞれ逆の方向に動かすことでエルロン(補助翼)として機能する。同時に両方(補助翼と昇降舵)の機能を使用する際は両方の方向を合成した位置に動かす。 この本来は2つある舵の方向をエレボンに合成して位置を決める計算は非常に複雑で、現代の全翼機ではフライ・バイ・ワイヤ方式で操縦補助されることを前提に装備されている。パイロットは従来と変わらない2軸方式の操縦系統で操舵すればよく(B-2 (航空機)など)、コンピューターが2つの軸の操舵量を計算して電子制御による油圧動作にてエレボンの位置を決める。 エレボンの仕組み自体は第二次世界大戦期に既に実用化されており、ナチス・ドイツの全翼機ホルテン Ho229の動翼に採用されていた。ただし当時は電子制御などはなく完全な手動コントロールで操舵する必要があり、安定性は低かった。.

新しい!!: スペースシャトルとエレボン · 続きを見る »

エンデバー (オービタ)

接近する''エンデバー''を国際宇宙ステーションから撮影(STS-118) thumb エンデバー(Endeavour, OV-105)は、スペースシャトルのオービタ。チャレンジャーの事故による機数減少を受けて「エンタープライズを改修するよりも安い」との判断の元、ストックされていたスペアパーツを用い製造された機体である。初飛行は1992年5月7日のSTS-49。2011年6月の引退までに25回の飛行を行った。 (エンデバー)の名前は、キャプテン・クックの南太平洋探検の第1回航海の帆船 (エンデバー号)に由来している。なお、努力という意味はそれぞれ、となるが、本船は固有名詞であるクックの船名に由来するが正しい。2007年7月には、NASA自身が作成した射点の横断幕でEndeavorと書いてしまうミスがあり、米国では話題になった。1971年に打ち上げられたアポロ15号の司令船の名称もエンデバー(Endeavour)である。 フィクションではアーサー・C・クラークのSF小説「宇宙のランデヴー」の主役宇宙船の名称もエンデバーだった。2001年宇宙の旅の主役宇宙船ディスカバリーと共にクラークの著書に登場する宇宙船と同じ名前のオービタである。 退役後はロサンゼルスのカリフォルニア科学センターに展示されている。.

新しい!!: スペースシャトルとエンデバー (オービタ) · 続きを見る »

エンタープライズ (オービタ)

ンタープライズ エンタープライズ(Enterprise, NASA型名: OV-101)は、スペースシャトル・オービタの1号機である。 1976年、アメリカ合衆国憲法発布200年を記念し、コンスティテューションと名付けられる予定だったが、『スタートレック』の宇宙船エンタープライズ号の名前をつけてほしいという手紙が多数届けられたため、当時のジェラルド・R・フォード大統領によってこの名が付けられた。 ただこのエンタープライズは滑空実験機であり、ファン達の望んだ「宇宙船エンタープライズ号」の誕生とはならなかった。一時は滑空試験の終了後に宇宙飛行ができるように改装する計画があったが、かわりにチャレンジャーを改装することとなり見送られた。初めて宇宙へ行ったオービタは2号機のコロンビアである。チャレンジャーを爆発事故で喪失した際に再度改装案が持ち上がるも、新たにエンデバーを建造する方が適切と判断されて実現しなかった。 試験終了後、国立航空宇宙博物館別館に展示されていたが、その間にほかのオービタの修理に使うため、機体の一部が取り外された。スペースシャトルが全機退役した後、ディスカバリーが同館で展示され、エンタープライズはニューヨークのイントレピッド海上航空宇宙博物館に移されることになった。2012年4月24日、エンタープライズはボーイング747の背に乗せられたままニューヨーク市上空をデモ飛行し 、同年6月にイントレピッドへ搬入された。 Image:Haise i Fullerton podczas programu Approach and Landing Test GPN-2000-001421.jpg|エンタープライズと滑空実験クルー 左側の腕を組んでいる人物がフレッド・ヘイズ 右側はゴードン・フラートン Image:Voo Enterprise.jpg|スペースシャトル輸送機から空中分離するエンタープライ.

新しい!!: スペースシャトルとエンタープライズ (オービタ) · 続きを見る »

エドワーズ空軍基地

ドワーズ空軍基地(エドワーズくうぐんきち、Edwards Air Force Base)は、アメリカ合衆国のカリフォルニア州の東部にあるアメリカ空軍の基地である。モハーヴェ砂漠のロジャース乾湖(ミューロック乾湖)に作られている。さまざまな機体のテスト飛行が行われる航空機開発の拠点として知られ、スペースシャトルの帰還時にケネディ宇宙センターへの帰還が困難なときには同基地に帰還することで知られている。.

新しい!!: スペースシャトルとエドワーズ空軍基地 · 続きを見る »

エアバスA380

アバスA380(Airbus A380)は、欧州エアバス社のターボファン4発の超大型旅客機。 かつてANAが運航していたB747SR-100型機(就航期間:1979年1月25日~2006年3月10日)の愛称として利用されていた。因みにANAによる同型機の運用により、世界で初めての有償座席数・500席が提供されることとなった。や「空のタイタニック」と呼ばれることもある。|date.

新しい!!: スペースシャトルとエアバスA380 · 続きを見る »

オリオン (宇宙船)

リオン(、またオライオンとも)は、アメリカ航空宇宙局 (NASA) がスペースシャトルの代替として開発中の有人ミッション用の宇宙船である。 当初はCrew Exploration Vehicle(クルー・エクスプロレイション・ビークル、略称はCEV)と呼ばれていたが、2006年8月22日に、オリオン座にちなみ「オリオン」と正式に命名された。この宇宙船は国際宇宙ステーション (ISS) への人員輸送や、次期有人月着陸計画(コンステレーション計画)への使用を前提に開発されていたが、2010年にコンステレーション計画が中止されたため、新たに「オリオン宇宙船」(Orion Multi-Purpose Crew Vehicle、略称はMPCV)として、ISSへの人員と貨物の輸送と回収に用途が変更されて開発が続けられている。その後、この機体は小惑星の有人探査にも使うことが表明された。オリオンの開発は、ロッキード・マーティンが行なっている。 2014年12月4日に無人試験機による初飛行が計画されたものの天候と技術的トラブルの影響で翌日の12月5日米時間午前7時5分に打ち上げが実行された。.

新しい!!: スペースシャトルとオリオン (宇宙船) · 続きを見る »

オートパイロット

ートパイロット(autopilot)あるいは自動操縦(じどうそうじゅう)とは、乗り物を、人の手によってではなく、機械装置により自動的に操縦する装置・システムを指す名称である。.

新しい!!: スペースシャトルとオートパイロット · 続きを見る »

オービタ

ービタ、オービター(Orbiter、軌道船)とは、スペースシャトルを構成するモジュールの内、実際に宇宙と地上を往還する宇宙船本体部分である。.

新しい!!: スペースシャトルとオービタ · 続きを見る »

オービタル・サイエンシズ

ービタル・サイエンシズ(英: Orbital Sciences Corporation、通称OSC、またはOrbital)は、人工衛星の製造・打ち上げを行うアメリカ合衆国の企業である。バージニア州のダレスに本社を持つ。打ち上げシステムグループはミサイル防衛とも関わっている。かつてはORBIMAGE(現GeoEye)とGPSレシーバーのMagellan lineも有していたが、タレスに売却している。 2014年4月29日に、ATK社の航空宇宙・防衛部門と対等合併することで合意し、オービタルATK社(Orbital ATK Inc.)を新社名にすることになった。この合併は、2015年2月10日に実施される。.

新しい!!: スペースシャトルとオービタル・サイエンシズ · 続きを見る »

カリフォルニア州

リフォルニア州(State of California、Estado de California、中:加利福尼亚州、加州)は、アメリカ合衆国西部、太平洋岸の州。アメリカ西海岸の大部分を占める。州都は、サクラメントである。.

新しい!!: スペースシャトルとカリフォルニア州 · 続きを見る »

ガリレオ (探査機)

リレオ (Galileo) は、1989年10月18日にアメリカ航空宇宙局 (NASA) が打ち上げた木星探査機。1995年12月7日に木星周回軌道に到達し、2003年9月に木星大気圏へ制御落下させられるまで、木星とその衛星の観測を続けた。名前は天文学者のガリレオ・ガリレイにちなむ。.

新しい!!: スペースシャトルとガリレオ (探査機) · 続きを見る »

キロバイト

バイト (kilobyte) はコンピュータで情報の大きさや記憶装置の容量を表す単位である。kBと略記される。 普段よく使われているSI接頭辞のキロ (k) と違って、慣用では210を表すものとして使われることが多い。この場合、1,024バイトを1キロバイトと換算する。 103と区別する目的で、kではなくKと書くことも多い。しかし、Kと大文字で書くことを定めたなんらかの規定があるわけではない(口語では、さらに明確に区別するために、「ケーバイト」と読む場合もある)。 いずれにせよ、このように1,024バイトを1キロバイトとするのはあくまで慣用であり、SI接頭辞に厳密に従えば、1kBは1,000バイトである。そのため、明確に210を表したい場合は、キビバイト (KiB) を用いる方が無用な混乱を招かずに済む。.

新しい!!: スペースシャトルとキロバイト · 続きを見る »

キツツキ目

ツツキ目(キツツキもく、学名 )は鳥類の目である。.

新しい!!: スペースシャトルとキツツキ目 · 続きを見る »

クリーペル

リーペル(、)はロシアが提唱していた次世代有人宇宙船。英語読みでクリッパーとも呼ばれる。計画は後に欧州宇宙機関と共同のCSTSに取って代わられ、CSTS失敗後もカプセル型のPPTSへと移行している。 ソユーズの後継機として設計されており、部分的に再利用できるスペースプレーンで、大気中を滑空して、現在のソユーズよりも遥かに人間に加速をかけないよう考えられていた。 RKKエネルギアのクリーペル案として、2006年には、純粋なリフティングボディと、小さな翼を持ったスペースプレーンの二つのバージョンが提案されていた。この宇宙船は少なくとも6人の人員を乗せ、地球と国際宇宙ステーションの間を輸送する性能を持つと推測される。また、楽観的な立場からは月探査や火星探査にも使用可能であると推測されていた。 開発の主な目的は、再使用型宇宙船の手法を取り入れ有人宇宙飛行のコストを減らす、宇宙旅行の準備時間を短くするとともに受ける加速度を減らす、そして古くなったソユーズカプセルのデザインを更新することだと見られている。.

新しい!!: スペースシャトルとクリーペル · 続きを見る »

グラマン ガルフストリーム II

ラマン ガルフストリーム IIはアメリカ合衆国のグラマン社が開発・製造したビジネスジェット機。グラマンでは初めてのビジネスジェット機であり、ターボプロップ機のグラマン ガルフストリーム Iを大幅改良し、ジェット化した機体である。 1966年に初飛行し、1979年までに258機が製造された。アメリカ陸軍ではC-11として、アメリカ沿岸警備隊にもVC-11Aの名称で1機が採用されている。アメリカ航空宇宙局では、スペースシャトルオービタの飛行特性に習熟するためシャトル訓練機のベースとして利用されている。日本では運輸省航空局飛行検査機(JA8431)として1機を採用し、現在はダイヤモンドエアサービス株式会社で運用されている。 機体は、ジェットエンジンを胴体後部左右に持ち、T字尾翼を有する。主翼は低翼配置で後退翼となっている。.

新しい!!: スペースシャトルとグラマン ガルフストリーム II · 続きを見る »

グライダー

ライダー (大阪市立科学館) 高性能複座グライダーDG1000 グライダー(glider, sailplane)または滑空機(かっくうき)は、滑空のみが可能な航空機。日本における航空法の航空機としては「滑空機」に分類される。 飛行機のように離陸・再上昇が可能なモーターグライダーの登場以降は、区別のためピュアグライダーとも呼ばれる(レトロニム)。またハンググライダーやパラグライダーを略してグライダーと呼ぶことがある。.

新しい!!: スペースシャトルとグライダー · 続きを見る »

グラスコックピット

ラスコックピット(glass cockpit、「ガラスのコックピット」の意)は、乗り物の操縦、運転に必要となる各種情報をアナログ計器を用いず、ブラウン管ディスプレイ(CRT)や液晶ディスプレイ(LCD)に集約表示したコックピット(操縦席)である。もともとは航空機のコックピットについての表現であるが、鉄道車両の運転台や自動車の運転席についても同様の表現が用いられる。.

新しい!!: スペースシャトルとグラスコックピット · 続きを見る »

グレートオブザバトリー計画

アメリカ航空宇宙局(NASA)によるグレートオブザバトリー(Great Observatories)は、4基の大型で強力な天体宇宙望遠鏡群である。4つの各ミッションは、それぞれに大きく異なる技術を使って、電磁スペクトル(ガンマ線、X線、可視光、紫外線、赤外線)の特定の波長/エネルギー領域を観測するために設計された。NASAの天体物理学部門のディレクターであったチャールズ・ペレリン博士が当計画を考案し、開発に携わった。4つの大望遠鏡群は1990年から2003年にかけて打ち上げられ、2016年現在、そのうちの3基がなお運用中である。.

新しい!!: スペースシャトルとグレートオブザバトリー計画 · 続きを見る »

ケネディ宇宙センター第39発射施設

ネディ宇宙センター第39発射施設(ケネディうちゅうセンターだい39はっしゃしせつ、Launch Complex 39、略称: LC-39)は、アメリカ合衆国フロリダ州メリット島にあるケネディ宇宙センター内のロケット発射場である。発射場および施設群は元々アポロ計画のために建設され、後にスペースシャトル計画のために改修された。2017年現在、運用中なのは39A発射台 (LC-39A) のみで、スペースX社のファルコン9とファルコンヘビーの打ち上げに使用されている。39B発射台 (LC-39B) はNASAのスペース・ローンチ・システム (SLS) の打ち上げに向けて改修中である。新しく、小さな39C発射台 (LC-39C) は2015年に完成し、小規模な打ち上げに対応するが、まだ使用されていない。 LC-39は、39A、39B、39Cの3基の発射台、およびビークル組立棟 (VAB)、VABと発射台との間でクローラー・トランスポーターがを輸送するために敷かれた運搬路である、オービタ整備施設 (OPF)、制御室 (the firing rooms) が入る、テレビ中継や写真撮影で象徴的に映されるカウントダウン時計で有名なに加え、さまざまな補給拠点や運用支援施設から構成されている。 スペースX社は39A発射台をNASAからリースして改修を施し、2017年以降のファルコン9の打ち上げに対応している。NASAはコンステレーション計画のために2007年から39B発射台の改修を開始していたが、2010年に同計画が中止となったため、現在は2019年12月に最初の打ち上げが予定されているスペース・ローンチ・システム (SLS) での運用に向けて準備中である。C発射台は元々アポロ計画のために建設する計画が挙がっていたが、実現することはなく、(もし建設されていたとしても)39Aと39Bの発射台の複製になっていたであろうとされる。その後、軽量級のロケットの打ち上げに対応できる、より小さな発射台となる39C発射台が2015年1月から6月までの期間に建設された。 NASAによるLC-39AおよびLC-39Bからの打ち上げは、発射台から約離れた場所に位置する打ち上げ管制センター (LCC) から管制が行われてきた。LC-39は、東部射場のレーダー管制および追尾業務を共に担う、数ある発射場のうちの一つである。.

新しい!!: スペースシャトルとケネディ宇宙センター第39発射施設 · 続きを見る »

ケープ・カナベラル

ープ・カナベラル(Cape Canaveral)は、.

新しい!!: スペースシャトルとケープ・カナベラル · 続きを見る »

コロンビア (オービタ)

ンビア(Columbia、NASA型名 OV-102)は、アメリカ航空宇宙局 (NASA) のスペースシャトル・オービタの2号機である。名前は18世紀のアメリカ人、ロバート・グレイの帆船に因む。1号機のエンタープライズは大気圏内専用の実験機であるため、宇宙に到達した最初のスペースシャトルである。 初飛行は1981年4月12日から4月14日にかけて行われた任務STS-1で、その後も計27回の飛行に成功した。1994年7月8日から7月23日までのSTS-65では、日本人初の女性宇宙飛行士である向井千秋が搭乗した。.

新しい!!: スペースシャトルとコロンビア (オービタ) · 続きを見る »

コロンビア号空中分解事故

ンビア号空中分解事故(コロンビアごうくうちゅうぶんかいじこ)は、2003年2月1日、アメリカ合衆国の宇宙船スペースシャトル「コロンビア号」が大気圏に再突入する際、テキサス州とルイジアナ州の上空で空中分解し、7名の宇宙飛行士が犠牲になった事故である。コロンビアは、その28回目の飛行であるSTS-107を終え、地球に帰還する直前であった。.

新しい!!: スペースシャトルとコロンビア号空中分解事故 · 続きを見る »

コンポジット推進薬

ンポジット推進薬(コンポジットすいしんやく、Composite Propellant)は、燃料と酸化剤が混合後も不均質になっている不均質系推進薬のうち、酸素を含んだ微粒子と炭化水素系ポリマーからなる推進薬である。 代表的なものとして酸化剤には過塩素酸アンモニウム、燃料にはHTPB(末端水酸基ポリブタジエン)がある。過塩素酸アンモニウムは燃焼時に大量の塩化水素が生じるなど発射後に毒性が強いガスが多量に拡散する問題を抱えており、代替品の開発が急がれている。.

新しい!!: スペースシャトルとコンポジット推進薬 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: スペースシャトルとコンピュータ · 続きを見る »

コンステレーション計画

ンステレーション計画のロゴ コンステレーション計画(Constellation program)とは、NASAが進めていた有人宇宙機計画で、アレスI・アレスV打ち上げ機と、オリオン宇宙船・アルタイル着陸機から構成される。 これらの宇宙機は多様なミッションに適合し、国際宇宙ステーションの輸送や月着陸に供される予定だったが、計画の遅れや予算の圧迫を理由として2010年に中止が発表された。コンステレーションの大半の機材はスペースシャトルを原型として開発されたが、システムはアポロ計画に似たものを採用していた。.

新しい!!: スペースシャトルとコンステレーション計画 · 続きを見る »

シャトル

ャトル (shuttle).

新しい!!: スペースシャトルとシャトル · 続きを見る »

シャトル (織物)

ャトル(杼)、中に入っているのは緯糸が巻かれているボビン(小管)。シャトルは高低差をつけられた経糸の間の空間を横切る。写真の一番上のシャトルには、経糸の上を滑らかに走るようにローラーがつけられている。 シャトル(シャットル、shuttle)あるいは杼(ひ)とは、織物を織るときに、経糸(たていと)の間に緯糸(よこいと)を通すのに使われる道具である。梭(おさ)とも。.

新しい!!: スペースシャトルとシャトル (織物) · 続きを見る »

シャトル・リモート・マニピュレータ・システム

ャトル・リモート・マニピュレータ・システム(Shuttle Remote Manipulator System、SRMS)とは、スペースシャトルに搭載されているロボットアームである。カナダの企業が開発・製造を担当した事からカナダアーム(Canadarm 1)とも呼ばれる。シャトルの貨物室から貨物を動かして、所定の位置で放すために使われる。浮遊している貨物を掴んで貨物室に入れて固定することもできる。シャトルの多用途性を支える重要な装備のひとつである。 1981年11月13日に打ち上げられたシャトルの2回目のミッション STS-2 で初めて使われた。STS-107 でのコロンビア号事故の後、アメリカ航空宇宙局 は SRMS にセンサ付き検査用延長ブーム (OBSS) を装備した。これは、熱防護システムの損傷を調べるために、シャトルの外観を調査する装置を乗せたブームである。将来行なわれるミッションのすべてで、SRMS がこの役割を果たすであろうことが期待されている。.

新しい!!: スペースシャトルとシャトル・リモート・マニピュレータ・システム · 続きを見る »

シャトル輸送機

アトランティス シャトル輸送機(シャトルゆそうき、Shuttle Carrier Aircraft:SCA)とは、スペースシャトル(オービタ)を輸送するためにNASAが改造したボーイング747航空機。2機が作られたが、シャトルの退役に伴って退役し、2014年には両機とも展示されるようになった。.

新しい!!: スペースシャトルとシャトル輸送機 · 続きを見る »

シリカ

リカ()は、二酸化ケイ素(SiO2)、もしくは二酸化ケイ素によって構成される物質の総称。シリカという呼び名のほかに無水ケイ酸、ケイ酸、酸化シリコンと呼ばれることもある。 純粋なシリカは無色透明であるが、自然界には不純物を含む有色のものも存在する。自然界では長石類に次いで産出量が多い。鉱物として存在するほか生体内にも微量ながら含まれる。.

新しい!!: スペースシャトルとシリカ · 続きを見る »

シグナス (宇宙船)

ナス(Cygnus)は、アメリカ航空宇宙局 (NASA) の商業軌道輸送サービス (COTS) の契約に則り、オービタル・サイエンシズ社 (OSC) の開発した国際宇宙ステーションへの物資補給を目的とした無人宇宙補給機である。.

新しい!!: スペースシャトルとシグナス (宇宙船) · 続きを見る »

ジェミニ計画

ェミニ計画(ジェミニけいかく、Project Gemini)は、アメリカ合衆国航空宇宙局(NASA)の二度目の有人宇宙飛行計画である。1961年から1966年にかけ、マーキュリー計画とアポロ計画の間に行われた。ジェミニ宇宙船は2名の宇宙飛行士を宇宙に送る能力があり、1965年から1966年までの間に10名の宇宙飛行士が地球周回低軌道を飛行した。この計画により、アメリカは東西冷戦時代にソビエト連邦との間でくり広げられた宇宙開発競争において優位に立つこととなった。.

新しい!!: スペースシャトルとジェミニ計画 · 続きを見る »

ジグソーパズル

『古城の秋』1000ピース(部分)ノイシュヴァンシュタイン城 ジグソーパズル製作中。『清水静岡名所交通鳥瞰図』954ピース 表面に木片が貼り付けられているピース ジグソーパズル(英語: jigsaw puzzle。中国語:拼圖)は、一枚の絵を幾つかの小片(ピース)に分解して、分解した物を再び組み立てるというタイプのパズル。.

新しい!!: スペースシャトルとジグソーパズル · 続きを見る »

スペースラブ

STS-50 コロンビアの貨物室にあるスペースラブモジュール LM1 とトンネル。 スペースラブ(Spacelab)は、スペースシャトルに積み込まれる再利用可能な宇宙実験室である。与圧モジュール、非与圧のキャリア、その他関連する機器などの複数の構成要素からなり、地球軌道上の微小重力状態で実験を行なうことができる。.

新しい!!: スペースシャトルとスペースラブ · 続きを見る »

スペース・ローンチ・システム

ペース・ローンチ・システム(Space Launch System, SLS)とは、NASAにより開発中の、アメリカ合衆国のスペースシャトルから派生した大型打上げロケットである。これは取り消されたコンステレーション計画に続くもので、また退役したスペースシャトルを代替するものである。 SLSは、アステロイドやラグランジュ点、また月と火星のように、地球近傍が対象となる目的地へ宇宙飛行士と装置を輸送するものである。もし必要であれば、SLSは国際宇宙ステーションへの旅行の助けとなる可能性がある。またSLS計画は、多目的有人機を配備するNASAのオリオン計画と統合された。SLSは、打ち上げの施設および地上での操作に際して、フロリダに設けられたNASAのケネディ宇宙センターを使用するものとされている。.

新しい!!: スペースシャトルとスペース・ローンチ・システム · 続きを見る »

スペースプレーン

X-30の想像図(1990年) スペースプレーン()は、航空機と同様に特別な打ち上げ設備を必要とせず、自力で滑走し離着陸および大気圏離脱・突入を行うことができる宇宙船。広義の意味として、スペースシャトルのように翼を持ち、飛行機のように滑空して着陸する機体全てを指すこともある。.

新しい!!: スペースシャトルとスペースプレーン · 続きを見る »

スペースシャトル外部燃料タンク

ペースシャトル外部燃料タンク(スペースシャトルがいぶねんりょうタンク、Space Shuttle External Tank, ET)は、アメリカ合衆国の宇宙船スペースシャトルの、燃料の液体水素と酸化剤の液体酸素を搭載する容器である。発射の際には、ここから軌道船の3機のメイン・エンジンに燃料と酸化剤が送られる。外部燃料タンクは発射からちょうど10分後、メイン・エンジンが停止された後に切り離され大気圏に突入し、ほとんどの部分が強烈な空気抵抗と熱によって分解・消滅する。固体燃料補助ロケットとは違い、再使用されることはない。燃え残った部分は、船舶の航路からは離れたインド洋上に落下する(軌道への直接投入が行われた場合は太平洋上になり、こちらの方式も利用可能である)。 外部燃料タンクは飛行のたびに投棄されているが、軌道上で再使用することは可能で astronautix.com (NASA Report, Utilization of the external tanks of the space transportation system http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940004970_1994004970.pdf) 、国際宇宙ステーションの居住区や実験区画に改造したり、火星などへの惑星間飛行をする際の宇宙船の燃料タンクとして利用したり、あるいは軌道上で人工衛星を製造する際の資材として活用するなどの案が出されていた。.

新しい!!: スペースシャトルとスペースシャトル外部燃料タンク · 続きを見る »

スペースシャトル固体燃料補助ロケット

ペースシャトル固体燃料補助ロケット(スペースシャトルこたいねんりょうほじょロケット、英語:the Space Shuttle Solid Rocket Boosters, SRBs)は、アメリカ合衆国の宇宙船スペースシャトルが発射する際、最初の二分間に使用される一対の大型固体燃料ロケットである。発射時にはさび色(またはオレンジ色)の外部燃料タンクの両側に配置され、シャトル全体の推力の83%を供給する。一機あたりでは、アポロ計画で使用された史上最大のロケット、サターンVの第一段(F-1エンジン5機)の40%の推力を発揮する。SRBは固体燃料ロケットとしては史上最大のものであり、また人間が搭乗するロケットに固体燃料が使われるのもシャトルが初めてであった。使用済みの機体はパラシュートで海に着水したあと回収され、点検し燃料を再充填して再使用される。本体および固体燃料の開発・製造は、ユタ州ブリガム・シティ(Brigham City)のサイオコール社が担当した。 SRBの外殻は、上記のように何度も再使用される。一例を挙げれば、シャトル初飛行のSTS-1で使用された本体下方部分は、その後30年間に6度飛行し、一回の燃焼試験を受け、2009年にはアレスI ロケットの試験飛行でも使用された。アレスI 自体も、シャトルの48回の飛行と5回の地上試験で使用された別々のSRBの部品を寄せ集めて作られたものであった。.

新しい!!: スペースシャトルとスペースシャトル固体燃料補助ロケット · 続きを見る »

スペースシャトル組立棟

ペースシャトル組立棟(-くみたてとう、Vehicle Assembly Building、VAB)は、アメリカ航空宇宙局のケネディ宇宙センターに位置する。世界で4番目に体積の大きな建物である。ジャクソンビルとマイアミの中間地点に当たり、メリット島の東岸にあるケネディ宇宙センター第39発射施設にある。アメリカ合衆国国家歴史登録財に登録されている。 スペースシャトル組立棟は、一続きの建物としては世界最大である。また1974年まではフロリダ州で最も高い建物であり、都市地域の外にある建物としては、現在でもアメリカ合衆国で最も高い。南側面に描かれているアメリカ合衆国の国旗は、1976年に描かれた時、世界最大だった。国旗の星は直径6フィート、縞模様の幅は9フィートである。.

新しい!!: スペースシャトルとスペースシャトル組立棟 · 続きを見る »

スペースシャトル計画

ペースシャトル計画(Space Shuttle program)は、アメリカ政府とNASAによって1981年から2011年にかけて行われた有人打ち上げ機計画。宇宙輸送システム (Space Transportation System, STS) とも呼ばれた。スペースシャトルは垂直に打ち上げられる機体の総称であり、オービタと呼ばれる航空機型の機体が再突入に利用される搭乗部分である。4 人から 7 人で運用でき、8 人までを収容可能で、22,700 kg のペイロードを低軌道まで輸送可能であった。宇宙でのミッションが完了すると、制御システム (Orbital Maneuvering System, OMS) を利用して軌道から外れ、地球の大気圏に再突入した。着陸まで、オービタは軌道制御システムと動翼を利用しグライダーのように飛行した。 シャトルは同じ機体で打ち上げ、軌道周回、着陸を何度も行った唯一の再使用型有人宇宙往還機であった。ミッションでは国際宇宙ステーション (International Space Station, ISS) のモジュールを含む大量のペイロードをさまざまな軌道に運び、国際宇宙ステーションへの人員輸送ローテーションを担い、修理ミッションが行われた。稀ではあるが衛星や他の宇宙機を軌道上で回復させたことや、衛星を地上へ持ち帰ったこともある。特に、ハッブル宇宙望遠鏡はシャトルの打ち上げによって5度にわたり補修されている。スペースシャトルの再使用部分の核となるオービタは 100 回使用、10 年運用を基準に設計された。 開発は1960年代の後半からスタートし、1970年代からNASAの有人宇宙飛行計画の中心となり、1981年の4月12日にコロンビア号の STS-1 での初飛行によって開始された。その後チャレンジャー号爆発事故やコロンビア号空中分解事故での中断があったものの、シャトル・ミール計画、ISS 計画など宇宙への有人輸送の中心であり続けた。ビジョン・フォー・スペース・エクスプロレーションによって、スペースシャトルは ISS の組み立て完了の2011年にあわせて引退することとなり、2011年7月のアトランティス号による STS-135 での着陸によって締めくくられた。スペースシャトル計画は2011年8月31日に公式に終了した。NASA はシャトルをオリオン宇宙船に置き換えることを計画しているが、予算カットによって完全な形態での開発は疑われている。.

新しい!!: スペースシャトルとスペースシャトル計画 · 続きを見る »

スペースシャトル軌道制御システム

OMSの構造 メンテナンスのためにシャトルから取り外されるOMS スペースシャトル軌道制御システム(スペースシャトルきどうせいぎょシステム、Space Shuttle Orbital Maneuvering System、OMS)は、スペースシャトルのオービタの軌道投入や軌道変更の際に用いられるロケットエンジンのシステムである。エアロジェット社によって設計及び製造された。スペースシャトルの背部の垂直尾翼の脇に2つ1組の「パック」になって取り付けられている。それぞれのパックには、ハイパーゴリック推進剤を用いるAJ-10エンジンが収められている。このエンジンは、アポロ司令・機械船の構造を基にし、27 kNの推力と313秒の比推力を持つ。100回のミッションで使うことができ、1000回の点火、累積で15時間の噴射が可能である。また、OMS/RCSと呼ばれる姿勢制御システム用のエンジンも積んでいる。使用する燃料はモノメチルヒドラジンで、酸化剤は四酸化二窒素である。スペースシャトルは、OMSを用いて、約300 m/sの軌道変換量を得るのに十分な燃料を積んでいる。 ミッション毎の飛行計画に応じて、OMSは、軌道までの加速の補助としても用いられる。.

新しい!!: スペースシャトルとスペースシャトル軌道制御システム · 続きを見る »

スペースX

ペース・エクスプロレーション・テクノロジーズ()、通称スペースX(SpaceX)は、ロケット・宇宙船の開発・打ち上げといった宇宙輸送(商業軌道輸送サービス)を業務とする、アメリカ合衆国の企業。2002年に決済サービスベンチャー企業PayPalの創設者、イーロン・マスクにより設立された。.

新しい!!: スペースシャトルとスペースX · 続きを見る »

スミソニアン博物館

ミソニアン博物館(スミソニアンはくぶつかん、英:Smithsonian Museum )は、アメリカを代表する科学、産業、技術、芸術、自然史の博物館群・教育研究機関複合体の呼び名。スミソニアン学術協会が運営している。.

新しい!!: スペースシャトルとスミソニアン博物館 · 続きを見る »

スカイロン

イロン()は、イギリスの企業 (REL) により設計されたスペースプレーンである。.

新しい!!: スペースシャトルとスカイロン · 続きを見る »

セルシウス度

ルシウス度(セルシウスど、、記号: )は、温度の単位である。その単位の大きさはケルビンと同一である。国際単位系 (SI) では、次のように定義されている『国際単位系(SI)』2.1.1.5 熱力学温度の単位(ケルビン)、pp.24-25。 すなわち、「セルシウス度」()は単位の名称であり、ケルビンの大きさに等しい温度間隔を表す。一方、「セルシウス温度」()は量の名称であり、(ケルビンで計った値と273.15だけ異なる)温度の高さを表す。しかし、一般にはこの違いが意識されず、混同されることが多い。.

新しい!!: スペースシャトルとセルシウス度 · 続きを見る »

ソフトウェア

フトウェア(software)は、コンピューター分野でハードウェア(物理的な機械)と対比される用語で、何らかの処理を行うコンピュータ・プログラムや、更には関連する文書などを指す。ソフトウェアは、一般的にはワープロソフトなど特定の作業や業務を目的としたアプリケーションソフトウェア(応用ソフトウェア、アプリ)と、ハードウェアの管理や基本的な処理をアプリケーションソフトウェアやユーザーに提供するオペレーティングシステム (OS) などのシステムソフトウェアに分類される。.

新しい!!: スペースシャトルとソフトウェア · 続きを見る »

ターボチャージャー

ターボチャージャー(turbocharger)は、排気の流れを利用してコンプレッサ(圧縮機)を駆動して内燃機関が吸入する空気の密度を高くする過給機である。.

新しい!!: スペースシャトルとターボチャージャー · 続きを見る »

タイム (雑誌)

『タイム』 (Time) は、1923年に創刊したアメリカ合衆国のニュース雑誌。世界初のニュース雑誌としても知られている。.

新しい!!: スペースシャトルとタイム (雑誌) · 続きを見る »

タイヤ

乗用車用タイヤ タイヤ(Tire, Tyre)は、車輪(ホイール)のリムを丸く囲む帯状の構造で、路面・地面あるいは軌道の上を転がる踏面(トレッド)を形成するものの総称である。ここではゴムタイヤについて述べる。漢字標記式: 輪胎(輪.

新しい!!: スペースシャトルとタイヤ · 続きを見る »

サターンV

ターンV(サターンファイブ、Saturn V)は、1967年から1973年にかけてアメリカ合衆国のアポロ計画およびスカイラブ計画で使用された、使い捨て方式の液体燃料多段式ロケット。日本では一般的にサターンV型ロケットと呼ばれる。.

新しい!!: スペースシャトルとサターンV · 続きを見る »

再使用型宇宙往還機

最もRLVに近い宇宙船スペースシャトル 再使用型宇宙往還機(さいしようがたうちゅうおうかんき、)とは、宇宙に繰り返し打ち上げることのできる打ち上げ機。使い捨て型ロケット (ELV) と対となる用語である。なお、単段式のRLVはSSTOとも呼ばれる。.

新しい!!: スペースシャトルと再使用型宇宙往還機 · 続きを見る »

商業軌道輸送サービス

ドラゴン宇宙船 商業軌道輸送サービス(しょうぎょうきどうゆそうサービス、)は、NASAが計画し調整を行なっている国際宇宙ステーション (ISS) への民間企業による輸送サービス計画である。この計画は2006年1月18日に発表された。 NASAは『少なくとも2015年までには国際宇宙ステーションへの商業輸送が必要になるだろう』と提案した。 COTSは商業補給サービス (Commercial Resupply Services, CRS) 計画とは区別しなければならない。COTSは補給機の開発に関わるものであり、CRSは実際の運搬を行うサービスになる。COTSはマイルストーンの進捗に応じてNASAからの支払いが行われるもので、将来的な輸送契約を約束するものではない。一方、CRSは義務的な契約となるため、契約者は計画の失敗時には責任を有することになる。関連する計画に商業乗員輸送開発 があり、こちらは国際宇宙ステーションのクルーの交代サービスを行うための商業有人宇宙機だけの開発を目指す。COTS、CRS、CCDevの3つのプログラムは、NASAのCommercial Crew and Cargo Program Office (C3PO) が管理している。.

新しい!!: スペースシャトルと商業軌道輸送サービス · 続きを見る »

動力

動力(どうりょく、power)とは、機械等を動かすために必要となるエネルギーのこと。「動力性能」という語があるが、その場合は仕事率を指すことが多い。.

新しい!!: スペースシャトルと動力 · 続きを見る »

動翼

動翼(どうよく、操縦翼面、moving surface, flight control surface)は、航空機の構成要素の一種。補助翼・方向舵・昇降舵などの主操縦翼面(いわゆる舵面)に加え、フラップ・スポイラー・エアブレーキなどの二次操縦翼面を含めた、可動する平板状装置全般を指すことが多い。ただし回転翼(プロペラ、ローター)は動翼とは呼ばれない。 ほかに、ミサイルやロケットなどの可動する翼面も動翼と呼ばれる。 動翼に対して、可動しない平板状構造(主翼を除く)は安定板と呼ばれる。.

新しい!!: スペースシャトルと動翼 · 続きを見る »

国立航空宇宙博物館

国立航空宇宙博物館(こくりつこうくううちゅうはくぶつかん、英:National Air and Space Museum)は、アメリカ合衆国・ワシントンD.C.に所在する、航空機・宇宙船に関連した収集物を展示する博物館。名称の頭文字からNASMの略称が用いられる。.

新しい!!: スペースシャトルと国立航空宇宙博物館 · 続きを見る »

国際宇宙ステーション

CGによる完成予想図。 国際宇宙ステーション(こくさいうちゅうステーション、International Space Station、略称:ISS、Station spatiale internationale、略称:SSI、Междунаро́дная косми́ческая ста́нция、略称:МКС)は、アメリカ合衆国、ロシア、日本、カナダ及び欧州宇宙機関 (ESA) が協力して運用している宇宙ステーションである。地球及び宇宙の観測、宇宙環境を利用した様々な研究や実験を行うための巨大な有人施設である。地上から約400km上空の熱圏を秒速約7.7km(時速約27,700km)で地球の赤道に対して51.6度の角度で飛行し、地球を約90分で1周、1日で約16周する。なお、施設内の時刻は、協定世界時に合わせている。 1999年から軌道上での組立が開始され、2011年7月に完成した。当初の運用期間は2016年までの予定であったが、アメリカ、ロシア、カナダ、日本は少なくとも2024年までは運用を継続する方針を発表もしくは決定している。運用終了までに要する費用は1540億USドルと見積もられている(詳細は費用を参照)。.

新しい!!: スペースシャトルと国際宇宙ステーション · 続きを見る »

四酸化二窒素

四酸化二窒素(しさんかにちっそ、dinitrogen tetroxide or nitrogen peroxide)は化学式 N2O4で表される窒素酸化物の一種である。窒素の酸化数は+4。強い酸化剤で高い毒性と腐食性を有する。四酸化二窒素はロケットエンジンの推進剤で酸化剤として注目されてきた。また化学合成においても有用な試薬である。固体では無色であるが、液体、気体では平衡副生成物の為、呈色している場合が多い(構造と特性に詳しい)。.

新しい!!: スペースシャトルと四酸化二窒素 · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: スペースシャトルとCPU · 続きを見る »

火薬

無煙火薬 火薬(かやく)は、熱や衝撃などにより急激な燃焼反応をおこす物質(爆発物)のことを指す。狭義には最初に実用化された黒色火薬のことであり、ガン・パウダーの英名通り、銃砲に利用され戦争の歴史に革命をもたらした。また江戸時代には焔硝(えんしょう)の語がよくつかわれ、昭和30年代頃までは、玩具に使われる火薬を焔硝と言う地方も多かった。 GHSにおける火薬類とは、Explosives(爆発物)のことである。.

新しい!!: スペースシャトルと火薬 · 続きを見る »

火星

火星(かせい、ラテン語: Mars マールス、英語: マーズ、ギリシア語: アレース)は、太陽系の太陽に近い方から4番目の惑星である。地球型惑星に分類され、地球の外側の軌道を公転している。 英語圏では、その表面の色から、Red Planet(レッド・プラネット、「赤い惑星」の意)という通称がある。.

新しい!!: スペースシャトルと火星 · 続きを見る »

磁気テープ

ーディオ用コンパクトカセット「ソニー・HF」(現在すでに終売)。スケルトン仕様で内装された磁気テープが見える 磁気テープ(じきテープ)とは、粉末状の磁性体をテープ状のフィルムに、バインダー(接着剤)で塗布または蒸着した記録媒体で、磁化の変化により情報を記録・再生する磁気記録メディアの一分類である。.

新しい!!: スペースシャトルと磁気テープ · 続きを見る »

磁気コアメモリ

磁気コアメモリ(じきこあめもり)は、小さなドーナツ状のフェライトコアを磁化させることにより情報を記憶させる記憶装置。 コンピュータの初期世代ではよく使われた。原理的に破壊読み出しで、読み出すと必ずデータが消えるため、再度データを書き戻す必要がある。破壊読み出しだが、磁気で記憶させるため、不揮発性という特徴がある(ただし、電源投入時のノイズ等で内容が破壊されうるので、設計次第で揮発性メモリのように扱われる)。 縦方向、横方向、さらに斜め方向の三つの線の交点にコアを配置する。縦横方向でアドレッシングを行ない、斜め方向の線でデータを読み出す。.

新しい!!: スペースシャトルと磁気コアメモリ · 続きを見る »

積乱雲

積乱雲(せきらんうん)とは、何らかの原因で発生した強い上昇気流によって積雲から成長して塔あるいは山のように立ち上り、雲頂が時には成層圏下部にも達することがあるような、巨大な雲のことである。積乱雲の鉛直方向の大きさは雲の種類の中でも最大であり、最高部から最低部までの高さは1万メートルを超えることもある。また、他に雷雲(らいうん)、入道雲(にゅうどうぐも)などの言い方がある。.

新しい!!: スペースシャトルと積乱雲 · 続きを見る »

空力ブレーキ

力ブレーキ(くうりきブレーキ)とは、空気力学的な力(空気抵抗)を利用する制動方法。空気抵抗は流れに対する物体の投影面積に比例すると共に、速度の2乗に比例するため、高速で動く物体のスピードを効率よく落とすために使われる。なお、空力ブレーキは分野によって呼び名が変わることがある。.

新しい!!: スペースシャトルと空力ブレーキ · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

新しい!!: スペースシャトルと空気 · 続きを見る »

メの翼。揚力を発生させる構造を見ることが出来る 翼(つばさ)は、鳥や航空機などの飛翔体が備え、空気中での飛行のために使用される構造。さらに広義の用法もある。文脈によっては「ヨク」とも読む。.

新しい!!: スペースシャトルと翼 · 続きを見る »

翼平面形

翼平面形(よくへいめんけい)とは、翼を真上から見た形状のこと。翼に言及していることが明らかな文脈では単に平面形ともいう。この項では、主に航空機のの翼平面形について解説する。.

新しい!!: スペースシャトルと翼平面形 · 続きを見る »

組み込みシステム

組み込みシステム(くみこみシステム、英: Embedded system)とは、特定の機能を実現するために家電製品や機械等に組み込まれるコンピュータシステムのこと。.

新しい!!: スペースシャトルと組み込みシステム · 続きを見る »

炭素繊維強化炭素複合材料

炭素繊維強化炭素複合材料(たんそせんいきょうかたんそふくごうざいりょう、carbon fiber reinforced-carbon matrix-composite)は、繊維強化複合材料の一種で、繊維として炭素繊維を、母材(充填材)としても炭素を用いたもの。カーボンカーボン (carbon-carbon) 、カーボンカーボン複合材料 (carbon-carbon composite)、C/Cコンポジット(C/C composite)、強化カーボンカーボン (reinforced carbon-carbon, RCC)などのさまざまな呼び方がある。.

新しい!!: スペースシャトルと炭素繊維強化炭素複合材料 · 続きを見る »

無重量状態

無重力状態 無重量状態(むじゅうりょう じょうたい)とは、万有引力および遠心力などの慣性力が互いに打ち消しあい、それらの合力が0ないしは0とみなしうる程度に小さくなっている状態。台ばかりで計られるような類の重さ(すなわち重量)が0となっている状態であることから無重量状態と呼ばれる。類義語ないしは同義語としての無重力(むじゅうりょく)という言葉が用いられる。近年では、微小重力という語も用いられる。 無重量環境下の特徴は、無対流、無静圧、無浮力、無沈降、無接触浮遊などであり、薬品や合金の製造などにおいて、地表のような重力下では実現不能な現象を観察・利用できる。 無重量状態は、スペースシャトルのような宇宙機や宇宙ステーション内、飛行機の放物線飛行(パラボリックフライト、嘔吐彗星)によるもの、塔からの自由落下などにより、人工的につくることができる。 宇宙開発機関・企業に加えて、現代では航空会社が研究者向けのサービスとして無重量状態を含む飛行を請け負うこともあり、フランスのや日本のダイヤモンドエアサービスなどが実験支援する装置を搭載した航空機を飛行させている。.

新しい!!: スペースシャトルと無重量状態 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: スペースシャトルと熱 · 続きを見る »

熱圏

熱圏(ねつけん、thermosphere)は、地球にある大気の層の一つ。大気の鉛直構造において中間圏の外側に位置する。この上には外気圏があり、中間圏との境界は中間圏界面(高度約80km)と呼ばれる。thermo はギリシャ語で熱の意。 太陽からの短波長の電磁波や磁気圏で加速された電子のエネルギーを吸収するため温度が高いのが特徴であり、2,000℃相当まで達することがある。 熱圏の温度は、あくまでも分子の平均運動量によって定義される。分子の密度が地表と比べてきわめて低いため、実際にそこに行っても大気から受ける熱量は小さく熱さは感じられないはずである。 熱圏の大気の分子は太陽からの電磁波や磁気圏で加速された電子のエネルギーを吸収して一部が電離している。この電離したイオンと電子が層になっているのが電離層である。熱圏にはE層、F1層、F2層(夜間は合わさってF層となる)が存在し、また季節によってスポラディックE層が出現する。 また高緯度地方では磁気圏で加速された電子などが次々に流入し、熱圏の大気の分子に衝突してそれを励起や電離させ、その分子が元に戻るときに発光する現象が見られる。これがオーロラである。 中間圏より下では混合によって大気中の分子の存在比は一様になるが、熱圏は大気の密度が低いため十分に混合せず、重力による分離が起こる。分子量の大きな分子が下に集まるため、80-100 kmでは窒素が主成分、170 kmより上では酸素原子が、1,000 km程度ではヘリウムが多い。 大気圏と宇宙空間を隔てるカーマン・ラインは、下部熱圏にあたる高度100kmに設定される。 先述の通りカーマン・ラインより上は宇宙空間として扱われるほど、熱圏内の気体分子は希薄であり、人工衛星の軌道の分類では低軌道とされるうちの下半分は熱圏に入る。.

新しい!!: スペースシャトルと熱圏 · 続きを見る »

燃料

木は最も古くから利用されてきた燃料の1つである 燃料(ねんりょう)とは、化学反応・原子核反応を外部から起こすことなどによってエネルギーを発生させるもののことである。古くは火をおこすために用いられ、次第にその利用の幅を広げ、現在では火をおこさない燃料もある。.

新しい!!: スペースシャトルと燃料 · 続きを見る »

発泡スチロール

泡スチロール(はっぽうスチロール、foamed styrol)は、合成樹脂素材の一種で、気泡を含ませたポリスチレン(PS)である。発泡プラスチックの一種。なお、スチロールとはスチレンの別名である。 また、発泡スチロールの98パーセントは空気である。 別称としては発泡ポリスチレン (foamed polystyrene)、発泡スチレン (foamed styrene)、ポリスチレンフォーム (polystyrene foam)、スチレンフォーム (styrene foam)、スタイロフォーム (styrofoam) がある。「スタイロフォーム」は米ダウ・ケミカル社製押出ポリスチレン (XPS)の商標名だが、アメリカ、カナダでは発泡スチロール全般を指す言葉(商標の普通名称化)になってしまっている。.

新しい!!: スペースシャトルと発泡スチロール · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: スペースシャトルと音速 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: スペースシャトルと運動エネルギー · 続きを見る »

落雷

落雷(らくらい)とは、帯電した積乱雲などと、主に地上物の間に発生する放電で、自然現象又は自然災害である雷の代表的な形態である。.

新しい!!: スペースシャトルと落雷 · 続きを見る »

衝撃波

衝撃波(しょうげきは、shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。.

新しい!!: スペースシャトルと衝撃波 · 続きを見る »

風洞

洞(ふうどう、wind tunnel, WT)は、人工的に小規模な流れを発生させ、実際の流れ場を再現・観測する装置ないし施設。発生させた流れの中に縮小模型などの試験体を置き、局所的な風速や圧力の分布・力・トルクの計測、流れの可視化などを行う。 風洞を用いたこのような実験は風洞実験あるいは風洞試験と呼ばれ、航空機・鉄道車両・自動車など高速で移動する輸送機械や、高層ビル・橋梁など風の影響を受け易い建築物の設計に用いられている。風洞実験は、流体力学全体から見ると、理論 (Analitycal Fluid Dynamics, AFD) と数値計算 (Computational Fluid Dynamics, CFD) と対比して実験流体力学 (Experimental Fluid Dynamics, EFD) と呼ばれる研究手法に位置づけられる。.

新しい!!: スペースシャトルと風洞 · 続きを見る »

補助動力装置

アバス 318/319/320/321 で使われている補助動力装置 APIC APS3200 補助動力装置(ほじょどうりょくそうち、Auxiliary Power Unit; APU)とは、航空機の各部に圧縮空気や油圧、電力を供給するために推進用のエンジンとは別に搭載された小型のエンジンである。APUはジェットエンジンを起動するために必要な圧縮空気の供給、また駐機中における各装置(エアコンなど)への動力の供給、といった用途に用いられる。.

新しい!!: スペースシャトルと補助動力装置 · 続きを見る »

解像度

解像度(かいぞうど)とは、ビットマップ画像における画素の密度を示す数値である。 すなわち、画像を表現する格子の細かさを解像度と呼び、一般に1インチをいくつに分けるかによって数字で表す。.

新しい!!: スペースシャトルと解像度 · 続きを見る »

計量器

計量器(けいりょうき)とは、計量法では、計量するための器具・機械・装置を指す。なお計量法では「計量」とは、次に掲げるもの(以下「物象の状態の量」と言う)を計ることを指す。 長さ、質量、時間、電流、温度、物質量、光度、角度、立体角、面積、体積、角速度、角加速度、速さ、加速度、周波数、回転速度、波数、密度、力、力のモーメント、圧力、応力、粘度、動粘度、仕事、工率、質量流量、流量、熱量、熱伝導率、比熱容量、エントロピー、電気量、電界の強さ、電圧、起電力、静電容量、磁界の強さ、起磁力、磁束密度、磁束、インダクタンス、電気抵抗、電気のコンダクタンス、インピーダンス、電力、無効電力、皮相電力、電力量、無効電力量、皮相電力量、電磁波の減衰量、電磁波の電力密度、放射強度、光束、輝度、照度、音響パワー、音圧レベル、振動加速度レベル、濃度、中性子放出率、放射能、吸収線量、吸収線量率、カーマ、カーマ率、照射線量、照射線量率、線量当量又は線量当量率、繊度、比重その他の政令で定めるもの。.

新しい!!: スペースシャトルと計量器 · 続きを見る »

記憶装置

GB SDRAM。一次記憶装置の例 GB ハードディスクドライブ(HDD)。コンピュータに接続すると二次記憶装置として機能する SDLT テープカートリッジ。オフライン・ストレージの例。自動テープライブラリで使う場合は、三次記憶装置に分類される 記憶装置(きおくそうち)は、コンピュータが処理すべきデジタルデータをある期間保持するのに使う、部品、装置、電子媒体の総称。「記憶」という語の一般的な意味にも対応する英語としてはメモリ(memory)である。記憶装置は「情報の記憶」を行う。他に「記憶装置」に相当する英語としてはストレージ デバイス(Storage Device)というものもある。.

新しい!!: スペースシャトルと記憶装置 · 続きを見る »

高揚力装置

トリプルスロッテッドフラップを展開し着陸するボーイング747 高揚力装置(こうようりょくそうち)とは、飛行機の揚力を増大させるための装置である。必要時に主翼から展開させるタイプのものが多い。.

新しい!!: スペースシャトルと高揚力装置 · 続きを見る »

超音速

超音速(ちょうおんそく、supersonic speed)とは、媒質中で移動する物体と媒質の相対速度が、その媒質における音速を超えること、およびその速度を指す。 音速との比であるマッハ数を使えば、マッハ数が1より大きいとも定義できる。 ただし、速度単位としてのマッハは対気速度で気温や気圧によって変化する。便宜上、超音速機のカタログスペックにおいては、対地速度1225km/h(340.31m/s、15℃・1気圧)をマッハ1とすることが多いが、この場合は物理現象としての音速・超音速とは扱いが異なる。.

新しい!!: スペースシャトルと超音速 · 続きを見る »

軌道傾斜角

軌道傾斜角(きどうけいしゃかく、英語:inclination)とは、ある天体の周りを軌道運動する天体について、その軌道面と基準面とのなす角度を指す。通常は記号 iで表す。 我々の太陽系の惑星や彗星・小惑星などの場合には、基準面は主星である天体、太陽の自転軸に垂直な平面つまり太陽の赤道面である。衛星の場合には基準面として主星の赤道面を採る場合と主星の軌道面を採る場合がある。人工衛星の場合には主星である地球の赤道面を基準とするのが普通である(人工衛星の軌道要素を参照)。 軌道傾斜角 iは0°≦i≦180°の範囲の値をとる。i.

新しい!!: スペースシャトルと軌道傾斜角 · 続きを見る »

迎角

迎角(むかえかく、げいかく、angle of attack, AoA)は、流体 (液体や気体) 中の物体(主に翼)が、流れに対してどれだけ傾いているかという角度をあらわす値である。迎え角とも。 航空機の主翼の場合、前縁と後縁を結んだ線(翼弦線、コード)と一様流とのなす角で、前上がりをプラスとする。 一般的な航空機の主翼の場合、揚力係数と抗力係数は、概ね迎角に比例して徐々に増加していくが、抗力係数が増加し続けるのに対し、揚力係数はある点をピークを過ぎて急減少に変わる。この点を最大揚力係数といい、そのときの迎え角を失速迎え角といい、それ以降の状態を失速という。抗力の増加により減速すれば、揚力は更に小さくなるなど、不安定で危険な状態である。なお航空機に十分な速度があれば、主翼を上方に傾けても機体自体が上昇していくため、迎角が増大する事は無い。逆に航空機の速度が不十分であれば、揚力の不足によって機体自体が降下してしまうため、迎角が大きくなってしまい、失速状態に陥る事となる。あくまで1次的な原因は迎角の増大であり、速度は2次的な原因である。また、ある迎角において、揚力係数と抗力係数との比を揚抗比といい、揚抗比の大きい主翼の航空機は、滑空性能が良く航続距離が長くなる。 主翼上面には、ベルヌーイの定理により上向きの揚力分布である風圧分布が発生するが、それらの風圧分布によって発生する揚力と抗力との合力が翼弦線と交わる点を風圧中心と呼んでいる。また、風圧中心は、迎角の変化により変化するが、主翼の中心と一致しないため、風圧中心に働く揚力と抗力との合力により、主翼に頭上げ又は頭下げの回転する力(モーメント)が発生するが、迎角が変化しても、頭上げ又は頭下げの回転する力(モーメント)が発生しない翼弦線と交わる点があり、これを空力中心と呼んでいる。これは、普通の主翼では、翼弦線の25%前後にある。 殆どの翼は、迎角が0°でも揚力が発生する翼型に設計されていて、揚力が0になるマイナスの値の迎角を零揚力角という。 揚力は速度の2乗に比例するので、迎角が一定なら、低速では揚力不足で機体は降下し、高速では揚力過剰となり機体が上昇していく事となり、水平飛行は特定の速度域でしか行えなくなる。そこで、速度が不足し下降するようであれば操縦者は機首を上げ、速度が過剰なら機首を下げ、迎角を調整する事により揚力を調整し、航空機は水平の高度を保って飛行できる。 凧は失速状態で揚がっている場合もある。 帆船は進路が風下方向に近ければ、帆の迎角は失速の範囲で揚力よりも抗力を主に利用する。.

新しい!!: スペースシャトルと迎角 · 続きを見る »

近点・遠点

近地点と遠地点の位置関係 近点・遠点(きんてん・えんてん、periapsis and apoapsis) とは、軌道運動する天体が、中心天体の重力中心に最も近づく位置と、最も遠ざかる位置のことである。両者を総称して軌道極点またはアプシス(apsis) と言う。 特に、中心天体が太陽のときは近日点・遠日点(きんじつてん・えんじつてん、perihelion and aphelion )、主星が地球のときは近地点・遠地点(きんちてん・えんちてん、perigee and apogee )、連星系では近星点・遠星点(きんせいてん・えんせいてん、periastron and apastron)と言う。地球を周回する人工衛星については英単語のままペリジー・アポジーとも言う。主星が惑星の場合、例えば木星の衛星や木星を周回する探査機(ジュノーなど)の軌道の木星に対する近点・遠点は近木点・遠木点(きんもくてん・えんもくてん、perijove and apojove)、土星ならば近土点・遠土点(きんどてん・えんどてん、perichron and apochron)と表現することもある。 中心天体の周りを周回する天体は楕円軌道を取るが、中心天体は楕円の中心ではなく、楕円の長軸上にふたつ存在する焦点のいずれかに位置する。このため周回する天体は中心天体に対して、最も接近する位置(近点)と最も遠ざかる位置(遠点)を持つことになる。遠点・近点および中心天体の重力中心は一直線をなし、この直線は楕円の長軸に一致する。 中心天体の重力中心から近点までの距離を近点距離(近日点距離、近地点距離)、遠点までの距離を遠点距離(遠日点距離、遠地点距離)といい、それぞれ軌道要素の1つである。軌道長半径、離心率、近点距離、遠点距離の4つの軌道要素のうち2つを指定すれば、軌道の2次元的な形状が決まる。通常、軌道長半径と離心率が使われるが、放物線軌道・双曲線軌道(特に、彗星の軌道)については通常の意味での軌道長半径を定義できないので、近点距離と離心率が使われる。なお、人工衛星については近地点高度・遠地点高度という言葉もあるが、これらは地球の海面(ジオイド)からの距離である。 他の天体による摂動、一般相対論的効果により、近点は(したがって遠点も)少しずつ移動することがある。これを近点移動(近日点移動、近地点移動)という。.

新しい!!: スペースシャトルと近点・遠点 · 続きを見る »

航空工学

航空工学(こうくうこうがく、aeronautical engineering)とは、航空機の設計・製造・運用・整備等に関する工学である。.

新しい!!: スペースシャトルと航空工学 · 続きを見る »

航空機

航空機(こうくうき、aircraftブリタニカ百科事典「航空機」)は、大気中を飛行する機械の総称である広辞苑 第五版 p.889「航空機」。.

新しい!!: スペースシャトルと航空機 · 続きを見る »

航空機関士

航空機関士(こうくうきかんし)とは、航空機の運航に携わる職種の航空従事者である。フライトエンジニア(Flight Engineer, FE)とも呼ばれる。.

新しい!!: スペースシャトルと航空機関士 · 続きを見る »

赤道

赤道(せきどう、、、)は、自転する天体の重心を通り、天体の自転軸に垂直な平面が天体表面を切断する、理論上の線。緯度の基準の一つであり、緯度0度を示す。緯線の中で唯一の大円である。赤道より北を北半球、南を南半球という。また、天文学では赤道がつくる面(赤道面)と天球が交わってできる円のことを赤道(天の赤道)と呼ぶ。天の赤道は恒星や惑星の天球上の位置(赤緯、赤経)を決める基準となる。 以下、特に断らないかぎり地球の赤道について述べる。.

新しい!!: スペースシャトルと赤道 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: スペースシャトルと蒸発 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: スペースシャトルと重力 · 続きを見る »

重力加速度

重力加速度(じゅうりょくかそくど、gravitational acceleration)とは、重力により生じる加速度である。.

新しい!!: スペースシャトルと重力加速度 · 続きを見る »

酸化剤

酸化剤のハザードシンボル 酸化とは、ある物質が酸と化合する、水素を放出するなどの化学反応である。酸化剤(さんかざい、Oxidizing agent、oxidant、oxidizer、oxidiser)は、酸化過程における酸の供給源になる物質である。主な酸化剤は酸素であり、一般的な酸化剤は酸素を含む。 酸化反応に伴い熱やエネルギーが発生し、燃焼や爆発は、急激な酸化現象である。酸化剤は燃料や爆薬が燃焼する際に加えられて、酸素を供給する役割を果たす。一般に用いられる酸化剤としては空気,酸素,オゾン,硝酸,ハロゲン (塩素,臭素,ヨウ素) などがある。.

新しい!!: スペースシャトルと酸化剤 · 続きを見る »

鋼(はがね、こう、釼は異体字、steel)とは、炭素を0.04~2パーセント程度含む鉄の合金。鋼鉄(こうてつ)とも呼ばれる。強靭で加工性に優れ、ニッケル・クロムなどを加えた特殊鋼や鋳鋼等とあわせて鉄鋼(てっこう)とも呼ばれ、産業上重要な位置を占める。.

新しい!!: スペースシャトルと鋼 · 続きを見る »

(あめ)とは、大気から水の滴が落下する現象で、降水現象および天気の一種。また、落下する水滴そのもの(雨粒)のことグランド現代大百科事典、大田正次『雨』p412-413。大気に含まれる水蒸気が源であり、冷却されて凝結した微小な水滴が雲を形成、雲の中で水滴が成長し、やがて重力により落下してくるものである。ただし、成長の過程で一旦凍結し氷晶を経て再び融解するものもある。地球上の水循環を構成する最大の淡水供給源で、生態系に多岐にわたり関与するほか、農業や水力発電などを通して人類の生活にも関与している。.

新しい!!: スペースシャトルと雨 · 続きを見る »

積雲 雲(くも)は、大気中にかたまって浮かぶ水滴または氷の粒(氷晶)のことを言う荒木 (2014)、p.22。地球に限らず、また高度に限らず、惑星表面の大気中に浮かぶ水滴や氷晶は雲と呼ばれる。雲を作る水滴や氷晶の1つ1つの粒を雲粒と言う。また地上が雲に覆われていると、霧となる。 気象学の中には雲学という分野も存在する。これは、気象観測の手段が乏しかった20世紀前半ごろまで、気象の解析や予測に雲の形や動きなどの観測情報を多用しており、雲の研究が重要視されたことを背景にしている。気象衛星などの登場によって重要性が薄くなり雲学は衰退してきている。 また、雨や雪などの降水現象の発生源となる現象であり、雲の生成から降水までの物理学的な現象を研究する雲物理学というものもある。.

新しい!!: スペースシャトルと雲 · 続きを見る »

住宅近郊への落雷 稲妻 雷(かみなり、いかずち)とは、雲と雲との間、あるいは雲と地上との間の放電によって、光と音を発生する自然現象のこと。 なお、ここでは「気象現象あるいは神話としての雷」を中心に述べる。雷の被害とその対策・回避方法については「落雷」を参照のこと。.

新しい!!: スペースシャトルと雷 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

新しい!!: スペースシャトルと電力 · 続きを見る »

電卓

一般的に使用される手帳タイプ電卓の例 キヤノンHS-1000H 電卓(でんたく)は、計算機の一種で電子(式)卓上計算機(でんし(しき)たくじょうけいさんき)の略である。JISの用語では、1979年(昭和54年)にJIS B0117で電卓の呼称が標準化した。名前の通り、電子回路によって計算を行い、卓上で使用できる(ないし、より小さい)サイズである。 名前のとおり机の上で使うのに適した大きさの小型計算機である。カード型のものが現れたり、また「電卓」という名前のソフトウェアがパソコンや携帯電話に搭載されるなどしたりして、現在では必ずしも卓上ではなくなっている。消費税の導入後には消費税の計算を簡単にワンタッチでできる機能なども付加されるようになった。.

新しい!!: スペースシャトルと電卓 · 続きを見る »

電子機器

電子機器(electronics、またはelectronic device、electrical equipment)は、電子工学の技術を応用した電気製品。 情報をデジタル処理する機器や、映像・音声を電気的にアナログ処理する機器などが含まれる。.

新しい!!: スペースシャトルと電子機器 · 続きを見る »

電線

電線(でんせん、Electrical wire電気用語辞典編纂委員会編 『新版 電気用語辞典』 コロナ社、1982年)とは、電気を伝導するための線 (Wire)。銅、銅合金、アルミニウムなどの良導体『電気工学ポケットブック(JR版)』「第4編・第2章」 オーム社、1967年"を線状に引き伸ばし、2つの地点間をつなぎ、電気を伝導するためのものである。電気設備に関する法令では、電気設備におけるそれを絶縁・保護のための被覆付きと被覆が付かないものがある、と分類しており、さらに保護層があるものは別の扱いとなる。 また、有線電気通信に関する法令では、送信の場所と受信の場所との間の線条その他の導体を利用して、電磁的方式により信号を行うことを含む通信を行うためのものである、としている。.

新しい!!: スペースシャトルと電線 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: スペースシャトルと電気 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: スペースシャトルと電気伝導体 · 続きを見る »

電池

アルカリマンガン乾電池 電池(でんち)は、何らかのエネルギーによって直流の電力を生み出す電力機器である。化学反応によって電気を作る「化学電池」と、熱や光といった物理エネルギーから電気を作る「物理電池」の2種類に大別される。.

新しい!!: スペースシャトルと電池 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: スペースシャトルと電流 · 続きを見る »

逆噴射

逆噴射(ぎゃくふんしゃ)とはジェットエンジンまたはロケットエンジンの噴射の方向を進行方向と異なる向きに変えることで航空機または宇宙船の動きを制御する方法の1つである。.

新しい!!: スペースシャトルと逆噴射 · 続きを見る »

降着装置

ボーイング747の右胴体主脚 降着装置(こうちゃくそうち)とは、航空機の機体を地上で支持する機構で、そのうち特に着陸の際の衝撃などを受けられるものを指す水上機には地上では機体を支持するが、着陸には使えない降着装置もある。。着陸装置、ランディングギア (Landing gear)、アンダーキャリッジ (undercarriage)、着陸脚ともいう。 通常は車輪と緩衝装置から構成されるが、水上用にフロート、雪上用のスキー、艦載機ではアレスティング・フック、ヘリコプターではスキッド(後述)を備えることもある。.

新しい!!: スペースシャトルと降着装置 · 続きを見る »

HOPE (宇宙往還機)

HOPE(ホープ、)は、日本の宇宙開発事業団 (NASDA) と航空宇宙技術研究所 (NAL) が研究開発していた、再利用可能な無人宇宙往還機である。 日本版スペースシャトルとも呼ばれるが、アメリカ航空宇宙局が運用していたスペースシャトルとは異なる。.

新しい!!: スペースシャトルとHOPE (宇宙往還機) · 続きを見る »

HP-41

HP-41CX と磁気カードリーダーと感熱式プリンタ HP-41C HP-41 シリーズは、ヒューレット・パッカードが1979年から1990年まで製造していたプログラム電卓である。拡張性があり、逆ポーランド記法を特徴とする。最初のモデル HP-41C は英数字を表示できる最初の電卓だった。その後 HP-41CV、HP-41CX と機能やメモリ容量を拡張していった。.

新しい!!: スペースシャトルとHP-41 · 続きを見る »

IBM

IBM(アイビーエム、正式社名: International Business Machines Corporation)は、民間法人や公的機関を対象とするコンピュータ関連製品およびサービスを提供する企業である。本社はアメリカ合衆国ニューヨーク州アーモンクに所在する。世界170カ国以上で事業を展開している。.

新しい!!: スペースシャトルとIBM · 続きを見る »

M

Mは、ラテン文字(アルファベット)の13番目の文字。小文字は m 。ギリシア文字の M μ(ミュー)に由来し、キリル文字の М м と同系の文字である。.

新しい!!: スペースシャトルとM · 続きを見る »

NASAシャトル着陸施設

NASAシャトル着陸施設(NASAシャトルちゃくりくしせつ、NASA Shuttle Landing Facility)とは、アメリカ合衆国フロリダ州ブレバード郡メリット島にある大規模滑走路施設である。スペースシャトルの着陸を主目的に建設された。シャトルが退役した2011年までシャトルの帰還時に使われた。この滑走路はそれ以外にもシャトル輸送機 (SCA) や宇宙飛行士の訓練用のT-38ジェット練習機、シャトル訓練機 (STA) 、ロケットやシャトルで打ち上げられる人工衛星などの空輸に使われる輸送機などが利用している。 施設面積は2平方キロメートルで、1本の滑走路を持つ。方向は15/33であり、進入方向によって15番滑走路、33番滑走路と呼び分けられる。長さはシャトル向けに4,572メートルもある長大なものである。オーバーラン地帯は両端に305メートル(1,000フィート)ずつ設けられており、合計5.2キロメートルもの長さとなっている。これは、大規模国際空港でも最大4キロメートル程度であるのに比べて十分長い。 シャトルの高速度の着陸に耐えるために、舗装は一般の空港より硬く丈夫であり、コンクリートの厚さは40.6センチメートルもあり、その下には周囲の土砂を圧縮したものが敷き詰められた。平面性も厳格に作られており、100メートルで1.6ミリメートルの高低差になっている。滑走路自体は湿地帯に位置しており、難易度の高い工事であった。 施設にはこの他、シャトル輸送機に搭載されたスペースシャトルの積み下ろし装置 (Mate-Demate Device: MDD) も設置されていたが、2014年11月に解体された。.

新しい!!: スペースシャトルとNASAシャトル着陸施設 · 続きを見る »

Oリング

Oリング(オーリング、)とは、密封(シール)に使用される、断面が円形(O形)の環型をした機械部品。押しつぶして密閉することから、スクイーズタイプのシール(スクイーズパッキン)に分類される。材質にはゴムが使用されるのが一般的である。装置などに気体や液体などの流体が進入することを防止したり、装置内部の流体が外に漏れないようにするために用いられる。.

新しい!!: スペースシャトルとOリング · 続きを見る »

PL/I

PL/I(ピーエルワン)は、汎用プログラミング言語の一つ。名前は英語の「programming language one」に由来する。 PL/Iは科学技術用、工業用、商業用などにデザインされた命令型プログラミング言語である。1964年に生まれ、教育機関、商用、工業で使用されてきた。2015年現在も使われている。 PL/Iの主要な用途はデータ処理で、再帰および構造化プログラミングに対応する。言語の構文は英語に似ており、検証や操作が可能な幅広い機能のセットを持ち、複合的なデータ型を記述することに適している。.

新しい!!: スペースシャトルとPL/I · 続きを見る »

RL-10

試験中のRL-10 デルタIVロケットの2段目のRL10B-2 RL-10はアメリカ合衆国で初の液体水素燃料のエンジンである。サターンI 型ロケットの2段目であるS-IVに6基が使用された。1または2基のRL-10がアトラスやタイタンの上段のセントールに使用された。.

新しい!!: スペースシャトルとRL-10 · 続きを見る »

SSME

ペースシャトルメインエンジン SSME(Space Shuttle Main Engine、スペースシャトルメインエンジン)は、スペースシャトルのオービタ後部に3基装備されている再使用型液体燃料ロケットエンジン。メーカーはロケットダイン社。形式はRS-24が与えられている。初期設計は1972年。 スペースシャトル計画では計46基のSSMEがあり、3基が1回の打ち上げで使用されるKSC booklet, Quote: "Since the first Space Shuttle launch on April 12, 1981, 42 different SSMEs have successfully demonstrated the performance, safety, and reliability of the world's only reusable liquid-fuel rocket engine.", 。 NASAは14基から16基のブロックIIのSSMEを保有しており、シャトル退役後も次の計画で使用することを考慮して保管されている 。.

新しい!!: スペースシャトルとSSME · 続きを見る »

STS-1

STS-1は、人類初のスペースシャトル計画のミッションである。1981年4月12日、コロンビアがアメリカのフロリダ州ケネディ宇宙センターから打ち上げられ、同年4月14日にカリフォルニア州エドワーズ空軍基地に帰還した。コロンビア号は高度307キロメートルの軌道上を36回にわたって周回した。.

新しい!!: スペースシャトルとSTS-1 · 続きを見る »

STS-107

STS-107 は、NASAのスペースシャトルで行なわれたミッションである。2003年1月16日にコロンビアで打ち上げられたが、2003年2月1日に起きた空中分解事故で喪失、クルーの7名は全員死亡した。スペースハブを使ったミッションでもあった。.

新しい!!: スペースシャトルとSTS-107 · 続きを見る »

STS-114

STS-114 は、スペースシャトル・コロンビアの事故後に行われた、最初の「飛行再開(Return to Flight)」ミッションである。 2005年7月26日 10:39 EDT (14:39 UTC) にディスカバリーで打ち上げられた。コロンビア号事故からは907日(約29ヶ月)が経過していた。当初の打ち上げ予定は7月13日だったが外部タンクの燃料センサーの異常のため延期され、結局は解決しないまま打ち上げが承認された。 ミッションは2005年8月9日に完了し、ケネディ宇宙センターの天候不良のため、第二候補のカリフォルニア州エドワーズ空軍基地に着陸した。 コロンビア号の事故は、上昇中に外部タンクから脱落した破片の衝突が原因だが、同じ問題がディスカバリーの打ち上げ時に再発した。そのため NASA は7月27日に、シャトルの飛行を凍結して機体に修正を加えることを決定した。シャトルの飛行は2006年7月4日の STS-121 で再開された。.

新しい!!: スペースシャトルとSTS-114 · 続きを見る »

STS-118

STS-118は、国際宇宙ステーション(ISS)への往来を目的として、2007年8月にスペースシャトルエンデバーによって行われた12日間に渡る有人宇宙飛行である。8月8日にフロリダ州ケネディ宇宙センターのLC39-Aから打ち上げられ、8月21日にケネディ宇宙センターのNASAシャトル着陸施設に着陸した。 これは、STS-107でのコロンビア事故前の最後のフライトである2002年11月のSTS-113以来の、エンデバーのフライトである。STS-118のパイロットのCharles Hobaughは、STS-107ではカプセルコミュニケーターを務めていた。 もしコロンビア事故がなかったら、コロンビア号の29回目の飛行はこのミッションに使われ、ISSへの唯一の飛行となっていたはずである。 このミッションは、ISSのプログラムではISS-13A.1と呼ばれ、S5トラスと曝露機器の予備品を載せた船外プラットフォーム(ESP-3)と、SPACEHABモジュールで補給品をISSに運ぶことを目的としていた。このミッションの後には、2010年末までに20回のスペースシャトルの飛行が計画されている。 このミッションでは、メディアの関心は、エンデバーの打上げ時に外部燃料タンクから剥離して落下した断熱フォームの衝突により、オービタの下側の耐熱タイルに生じた小さな損傷穴に集中した。断熱フォームの衝突は、コロンビアの事故の原因でもあったが、損傷は比較的小さく、致命的な位置でもなかった。帰還後の、2007年8月31日、NASAは、損傷を受けたタイルはオービタ整備施設で取り除かれたが、再突入時の熱によるオービタへのダメージは見られなかったと発表した。.

新しい!!: スペースシャトルとSTS-118 · 続きを見る »

STS-125

STS-125は、ハッブル宇宙望遠鏡サービスミッション(HST SM-4)のために、2009年5月にスペースシャトルアトランティスによって行われた有人宇宙飛行である。 当初は、2008年10月に打ち上げが予定され、発射場まで移動したが、直前になってハッブル宇宙望遠鏡のシステムに不具合が見つかり、その修理の準備を行うために延期された。 主な内容は、故障したメインカメラACS (掃天用高性能カメラ) の交換、バッテリーの交換、新たな観測機器の取り付け、その他故障箇所の修理である。 ハッブル宇宙望遠鏡に対するサービスミッションはこれが7年ぶり5度目であり、これが最後となった。また、スペースシャトルが国際宇宙ステーション(ISS)関連以外のミッションで飛行するのもこれが最後となった。 極めて難易度の高い困難なミッションであるため、過去に修理ミッションの経験がある飛行士を起用し、二年間に渡る長期の訓練を行った。 悪天候のため着陸はケネディ宇宙センターからエドワーズ空軍基地へと変更された。.

新しい!!: スペースシャトルとSTS-125 · 続きを見る »

STS-130

STS-130は、2010年2月に打ち上げられたスペースシャトル エンデバーによる国際宇宙ステーション(ISS)組み立てミッション(20A)である。.

新しい!!: スペースシャトルとSTS-130 · 続きを見る »

STS-131

STS-131は、2010年4月に打ち上げられたスペースシャトル ディスカバリーによる国際宇宙ステーション(ISS)組み立てミッション(19A)である。.

新しい!!: スペースシャトルとSTS-131 · 続きを見る »

STS-132

STS-132は、2010年5月14日より26日まで行われたスペースシャトル アトランティスによる国際宇宙ステーション(ISS)利用補給ミッション(ULF4)である。.

新しい!!: スペースシャトルとSTS-132 · 続きを見る »

STS-133

STS-133は、2011年2月に打ち上げられたスペースシャトル ディスカバリーによる国際宇宙ステーション(ISS)利用補給ミッション(ULF5)である。本飛行がディスカバリーの最後の飛行となった。当初はスペースシャトル自体の最終飛行となる予定だったが、STS-134が繰り下がり、STS-135が追加されたため最後から3番目となった。.

新しい!!: スペースシャトルとSTS-133 · 続きを見る »

STS-134

STS-134は、2011年5月に打ち上げられたスペースシャトル エンデバーによる国際宇宙ステーション(ISS)利用補給ミッション(ULF6)である。本飛行がエンデバーの最後の飛行となった。.

新しい!!: スペースシャトルとSTS-134 · 続きを見る »

STS-135

STS-135は、2011年7月8日に打ち上げられたスペースシャトル アトランティスによる国際宇宙ステーション(ISS)への飛行ミッションであり、アトランティスの、そしてスペースシャトルの最後の飛行となった。.

新しい!!: スペースシャトルとSTS-135 · 続きを見る »

STS-2

STS-2は、アメリカ航空宇宙局によるスペースシャトルのミッションである。1981年11月12日にコロンビアで打ち上げられた。スペースシャトルの、またコロンビア号の2度目のミッションであり、地球に帰還した再利用可能な有人宇宙船が再び宇宙に戻ったのは初めてのことである。 スペースシャトル計画の検討の初期段階では、STS-2ではスカイラブの再起動を行う予定であったが、開発の遅れとスカイラブの軌道が縮小していたため、ミッションは不可能だった。STS-2の打上げ時には、スカイラブは既に軌道を外れてかなり経った後だった。.

新しい!!: スペースシャトルとSTS-2 · 続きを見る »

STS-26

STS-26はチャレンジャー号爆発事故後のスペースシャトルの飛行再開ミッションである。2年8ヶ月ぶりとなる1988年9月29日に打ち上げられた。オービタはディスカバリー号を使用。 このフライトから、STS-9以来となるSTS番号システムに戻された。またSTS-4以来初めて全員のクルーが、打ち上げと帰還時に与圧スーツを着用するようになった。 チャレンジャー号事故を受けてスペースシャトルには多数の改良が行われ、固体ロケットブースター(SRB)等が改良された他、帰還時に使える搭乗員脱出システムをこの飛行から装備するようになった。.

新しい!!: スペースシャトルとSTS-26 · 続きを見る »

STS-31

STS-31 は、ハッブル宇宙望遠鏡を地球軌道に投入したスペースシャトル・ディスカバリーの飛行ミッションである。 これはスペースシャトル計画で35回目の飛行ミッションで、1990年4月24日にフロリダ州ケネディ宇宙センター39B発射台から離昇した。この打ち上げ時には、1986年1月以来初めて、同時に2機のシャトルが発射台に設置されていた。39B発射台にはディスカバリーで、39A発射台にはコロンビアである。.

新しい!!: スペースシャトルとSTS-31 · 続きを見る »

STS-4

STS-4は、コロンビアを用いたアメリカ航空宇宙局によるスペースシャトルのミッションである。1982年6月27日に打ち上げられた。4度目のスペースシャトルのミッションであり、また4度目のコロンビアのミッションである。.

新しい!!: スペースシャトルとSTS-4 · 続きを見る »

STS-51-L

STS-51Lは、1986年1月28日に行われた、スペースシャトルチャレンジャーのミッションである。スペースシャトルのミッションとしては25回目で、チャレンジャーとしては10回目。ケネディ宇宙センター発射施設39-Bからのシャトルの初打上げであった。 アメリカでは初のアジア系宇宙飛行士である、日系人のエリソン・オニヅカ、初の民間人宇宙飛行士で高校教師クリスタ・マコーリフ、初の黒人宇宙飛行士ロナルド・マクネイアらが搭乗して大きな注目を集めていた。しかし発射から73秒後に空中分解を起こして、乗組員全員が死亡する大惨事となった。機体全体が分解した後も、2基の固体燃料補助ロケット(SRB)は無制御で飛行を続けていたが、こちらは110秒後に地上からの自爆指令により破壊された。.

新しい!!: スペースシャトルとSTS-51-L · 続きを見る »

STS-6

STS-6は、1983年4月4日より行われたスペースシャトル計画のミッションである。オービタにチャレンジャーを用いた初めてのミッションである。.

新しい!!: スペースシャトルとSTS-6 · 続きを見る »

STS-92

STS-92 は、スペースシャトル・ディスカバリーによる国際宇宙ステーションへの飛行ミッションであり、スペースシャトル100回目のミッションである。.

新しい!!: スペースシャトルとSTS-92 · 続きを見る »

STS-95

STS-95は、1998年10月にスペースシャトルディスカバリーによって行われた8日間に渡る有人宇宙飛行である。ディスカバリーの25回目の飛行で、1981年4月にスペースシャトルのプログラムが始まって以来、92回目の飛行であった。また1959年のマーキュリー計画時代の宇宙飛行士で、アメリカ合衆国上院議員のジョン・ハーシェル・グレンが復帰し、2度目の宇宙飛行を行ったことで話題となった。グレンは最年長の宇宙飛行者となった。また、アメリカ合衆国でATSC高精細度テレビジョン放送が始まったことでも知られる。さらに、Pedro Duqueがスペイン人で初めての宇宙飛行者となった。.

新しい!!: スペースシャトルとSTS-95 · 続きを見る »

T-38 (航空機)

T-38はアメリカ合衆国のノースロップ(現・ノースロップ・グラマン)社が開発した練習機。愛称はタロン(Talon:猛禽類の鉤爪の意)。 練習機ながらアフターバーナーを装備し、超音速を発揮できる。優秀な双発ジェットの高等練習機として知られ、総数1,000機以上が生産された。.

新しい!!: スペースシャトルとT-38 (航空機) · 続きを見る »

TDRS

TDRS (、追跡・データ中継衛星) は、NASAおよびアメリカ合衆国政府機関によって、スペースシャトルや国際宇宙ステーション (ISS)、人工衛星 (ハッブル宇宙望遠鏡、ランドサット、TRMM、EOS、NASAの多数の天体観測衛星など)との通信に使用されるデータ中継衛星のシリーズであり、またその衛星を使ったネットワークである。 スペースシャトルの退役に伴い、一時的にTDRSの通信需要は減少したが、欧州補給機(ATV)、日本の宇宙ステーション補給機(HTV)、米国の商業補給船ドラゴン、シグナスとの通信にも使われているほか、ISSの実験活動拡大に伴い通信容量拡大の要求は増加している。.

新しい!!: スペースシャトルとTDRS · 続きを見る »

X-15 (航空機)

X-15は、アメリカで開発された高高度極超音速実験機。ノースアメリカン社によって3機が製作された。ジェットエンジンではなくロケットエンジンにより高高度まで上昇出来る能力を持つロケットプレーンであり、この機体で得られた極超音速下での空力特性や熱力学的影響などの研究結果は、やがてはスペースシャトルの開発にまで貢献した。.

新しい!!: スペースシャトルとX-15 (航空機) · 続きを見る »

X-20 (宇宙船)

X-20 X-20は、アメリカ国防総省が構想し、ボーイング社によって開発が進められた宇宙偵察機。愛称はダイナソア(Dyna-Soar)。.

新しい!!: スペースシャトルとX-20 (宇宙船) · 続きを見る »

X-33 (航空機)

X-33はアメリカ合衆国が開発していた再使用型宇宙往還機の無人実験機。アメリカ航空宇宙局 (NASA) とロッキード・マーチンが開発していた。スペースシャトルの後継機の一案であるベンチャースターの実証モデルであった。開発中止となり実機は完成しなかった。.

新しい!!: スペースシャトルとX-33 (航空機) · 続きを見る »

Xプレーン

Xプレーンは、アメリカ合衆国が開発した実験機・記録機シリーズのこと。名称が実験機・記録機を意味するXで始められていることから、Xプレーン(X plane: planeは飛行機の意)と呼ばれるようになった。その性格上、製造機数は少ないが多様であり、特異な外形を持つものや、世界記録を更新するなど優秀な性能を示すものも作られた。.

新しい!!: スペースシャトルとXプレーン · 続きを見る »

抵抗

抵抗(ていこう).

新しい!!: スペースシャトルと抵抗 · 続きを見る »

抗力

抗力(こうりょく)は、流体(液体や気体)中を移動する、あるいは流れ中におかれた物体にはたらく力の、流れの速度に平行な方向で同じ向きの成分(分力)である。流れの速度方向に垂直な成分は揚力という。 追い風で水面をかき分けて進んでいる帆船は、空気から進行方向の抗力を、それより弱い逆方向の抗力を水から受けている。また、レーシングカー等では揚力でダウンフォースを発生させている。抗力も揚力もケースバイケースで、その方向が字義通りではない場合がある。.

新しい!!: スペースシャトルと抗力 · 続きを見る »

接地

接地(せっち)とは、電気機器の筐体・電線路の中性点・電子機器の基準電位配線などを電気伝導体で基準電位点に接続すること、またその基準電位点そのものを指す。本来は基準として大地を使用するため、この名称となっているが、基準として大地を使わない場合にも拡張して使用されている。アース(earth)、グランド(グラウンド)(ground)とも呼ばれる。.

新しい!!: スペースシャトルと接地 · 続きを見る »

推力

推力(すいりょく、スラスト、thrust)とは、移動する物体(走行物体や飛行物体 等々)を進行方向に推し進める力のこと平凡社『世界大百科事典』 第2版 「推力」。「推進力」とも。.

新しい!!: スペースシャトルと推力 · 続きを見る »

搭乗運用技術者

搭乗運用技術者(とうじょううんようぎじゅつしゃ、ミッションスペシャリスト、英語:Mission Specialist, MS)は、スペースシャトルの運用全般を担当し、船外活動(宇宙遊泳)やロボットアームの操作、打上げ帰還時の操縦手の補佐などを担当する宇宙飛行士のことであり、NASAの宇宙飛行士として扱われる。.

新しい!!: スペースシャトルと搭乗運用技術者 · 続きを見る »

極軌道

極軌道(きょくきどう、英語: polar orbit)は、惑星や衛星等が、その母星である天体の、極の上空やその付近を通る軌道である。軌道力学の用語で言うならば(赤道面に対して)軌道傾斜角が90度に近い軌道である。 極軌道は、地図作成や地球観測衛星、偵察衛星、気象衛星などでよく用いられる。対地同期軌道と比較して、地球上の広い範囲の地点を常に上空から次々と観測することが利点あるいは欠点であり、地球上のある地点を常に同じ角度から観測しないことが利点あるいは欠点である。.

新しい!!: スペースシャトルと極軌道 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: スペースシャトルと欧州宇宙機関 · 続きを見る »

水蒸気

水蒸気(すいじょうき、稀にスチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合を湿度という。.

新しい!!: スペースシャトルと水蒸気 · 続きを見る »

気温

気温(きおん)とは、大気の温度のこと。気象を構成する要素の1つ。通常は地上の大気の温度のことを指す。.

新しい!!: スペースシャトルと気温 · 続きを見る »

油圧

油圧(ゆあつ)あるいは油圧システム(ゆあつシステム)または油圧駆動システム(ゆあつくどうシステム、Hydraulic drive system)とは、液体(主に鉱物油)をエネルギーの伝達媒体とした駆動系のこと。類似した圧力媒体の異なる圧力駆動システムには空圧や水・グリセリンを使用した機構がある。.

新しい!!: スペースシャトルと油圧 · 続きを見る »

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。.

新しい!!: スペースシャトルと液体酸素 · 続きを見る »

液体水素

液体水素用タンク 液体水素(えきたいすいそ)とは、液化した水素のこと。沸点は-252.6℃で融点は-259.2℃である(重水素では、沸点-249.4℃)。水素の液化は、1896年にイギリスのジェイムズ・デュワーが初めて成功した。.

新しい!!: スペースシャトルと液体水素 · 続きを見る »

液晶

液晶(えきしょう)は、固体と液体の両方の性質を示す状態の一つにある物質である。また、その状態を示す場合もある。 これを利用したディスプレイ・テレビ受像機については、液晶ディスプレイ・薄型テレビを参照のこと。.

新しい!!: スペースシャトルと液晶 · 続きを見る »

滑空

滑空(かっくう、Gliding)とは、主にグライダー(滑空機)、ハンググライダー、パラグライダーなどの空気より重い航空機(重航空機という)の降下飛行を指す。.

新しい!!: スペースシャトルと滑空 · 続きを見る »

滑走路

滑走路(かっそうろ、runway)とは、飛行機が滑走し、離陸・着陸を行うための直線状の道のこと。空港、飛行場、空母などに設置された施設で、空港における最重要設備である。.

新しい!!: スペースシャトルと滑走路 · 続きを見る »

朝日新聞デジタル

朝日新聞デジタル(あさひしんぶんデジタル)は、朝日新聞社の運営するニュースサイトである。無料のニュースサイト(24時刊)と有料の電子新聞(朝刊、be・別冊など)で構成されている。.

新しい!!: スペースシャトルと朝日新聞デジタル · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: スペースシャトルと月 · 続きを見る »

有人宇宙飛行

ェミニ4号でアメリカ人初の宇宙遊泳(船外活動)を行った。(1965年) 有人宇宙飛行(ゆうじんうちゅうひこう)とは、宇宙船に人が乗り、宇宙を飛行することである。宇宙飛行を行うために特に訓練された者を宇宙飛行士と呼び、そうでない者が宇宙飛行を行う場合、特に宇宙旅行と呼ぶ。 宇宙ロケットに人間が乗り込むことには、依然安全上の大きなリスクがあり、実際に宇宙開発においては、惑星探査などその多くをロボットが担っているが、人間が行わなくてはならない活動も少なくない。宇宙船内での高度な実験、宇宙ステーションの建設などを行うことは、すなわち宇宙開発の主導権を握ることを意味する。現在建設中の国際宇宙ステーションでは有人飛行実績の高いロシアとアメリカが、主導的な立場を担っている。 有人宇宙飛行に成功しているのはロシア連邦(1961年4月 当時はソビエト連邦)、アメリカ合衆国(1961年5月)、中華人民共和国(2003年10月)の3か国となっている。.

新しい!!: スペースシャトルと有人宇宙飛行 · 続きを見る »

最大動圧点

最大動圧点(さいだいどうあつてん)は航空宇宙工学における用語で、打上げロケットや観測ロケットなどの飛翔体の飛行プロファイルにおいて、大気圏内で動圧が最大になる点(マックスQ (英語: max Q))のことである。 圧縮流体中を動く物体の動圧 はおおまかに、流体の密度 と、流体と物体との相対速度 によって以下の式で与えられる。 (地球での)ロケットの打上げの場合、 はロケットがある高度にある時のその高度における地球の大気の密度、V はその時の対気速度であるから、.

新しい!!: スペースシャトルと最大動圧点 · 続きを見る »

海里

海里(かいり、浬、nautical mile)は、長さの計量単位であり、国際海里 (international nautical mile) の場合、正確に 1852 m である。元々は、地球上の緯度1分に相当する長さなので、海面上の長さや航海・航空距離などを表すのに便利であるために使われている。英語では、sea mile とも呼ばれる。.

新しい!!: スペースシャトルと海里 · 続きを見る »

断熱材

断熱材(だんねつざい)とは、物理・化学的物性により熱移動・熱伝達(どちらも)を減少させるものの総称。熱絶縁材とも呼ぶ。建築用のものは断熱材、工業用のものは保温材と呼称されることが多い。また、断熱材の材料を断熱材料、成形製品を断熱材と呼び分けるが現実には混用が多い。ここでは主に建築材としての断熱材について述べる。.

新しい!!: スペースシャトルと断熱材 · 続きを見る »

方向舵

方向舵(ほうこうだ、英語:rudder)は飛行機の操縦に用いる動翼の一つである。ラダーとも呼ばれる。垂直尾翼後部にある翼型の可動部分であり、機体の重心を貫く上下軸を中心とした動きを制御する。簡単に言うと、左右の首振り運動(ヨーイング)を起こしたり止めたりすることに使う。主翼の補助翼と併用して、定常釣り合い旋回をする。 操縦感覚という比較的評価のしにくい性能にかかわる部分であるため、垂直尾翼まわりは設計者の個性がでる。中島飛行機の小山技師の設計による戦闘機の方向舵は一貫して下ふくれの上下通しの方向舵が採用されていて、迎え角の大きい時の操縦性の確保を狙ったとされている。.

新しい!!: スペースシャトルと方向舵 · 続きを見る »

旅客機

旅客機(りょかくき、りょかっき「りょきゃくき」という読み方は辞書にない。大辞林: りょかくき、大辞泉: りょかっき)とは、主に旅客を輸送するために製作された民間用飛行機(民間機)である。個人・官庁所有の小型飛行機や企業が使用するビジネスジェットなどは含まない。貨物の輸送が主用途である貨物機とは一般に区別されるが、貨客混載で運用されるコンビネーションcombination(コンビ)や、旅客輸送仕様と貨物輸送仕様とを切り替えられるコンバーチブルconvertibleなどとの違いはあいまいである。民間の貨物輸送機は旅客機を元に派生設計され製造されたものも多い。 旅客機は航空機メーカーが製造し、航空会社が乗客や貨物を乗せて運航する。航空会社は乗客が支払う運賃を主な収入とする日本の航空法の耐空類別では「航空輸送業務の用に適する飛行機」としての「輸送 T」に分類される。。 旅客機の運航形態には、あらかじめ決められた時刻表に従って航空会社により定期的に運航され、一般的な定期便のほかに、不定期に運航されるチャーター便がある。21世紀現在では旅客だけを輸送して貨物を輸送しない旅客機は存在しないチームFL370編、『旅客機が飛ぶしくみ』、新星出版社、2009年9月15日初版発行、ISBN 9784405071179。 A340-300。長距離航空路に就航している代表的な旅客機の1つである。 室津義定編著、『航空宇宙工学入門』、森北出版、2005年6月25日第2版第1刷、ISBN 4627690320) 飯野明監修、『航空力学の基本』、秀和システム、2009年12月4日第1版第2刷、ISBN 9784798024493 日本航空技術協会編、『航空機システム』、社団法人 日本航空技術協会2008年3月31日第3版第4刷発行、ISBN 9784902151237 鳥飼鶴雄著、『大空への挑戦』、グランプリ出版、2002年11月12日初版発行、ISBN 4876872392 --> 日本航空技術協会編、『航空電子・電気装備』、社団法人日本航空技術協会、2008年3月31日第2版第2刷発行、ISBN 9784902151305 日本航空技術協会編、『航空電子入門』、社団法人日本航空技術協会、2001年4月2日第1版第6刷発行、ISBN 4930858852 日本航空技術協会編、『航空電気入門』、社団法人日本航空技術協会、2002年3月12日第1版第4刷発行、ISBN 4930858844 -->.

新しい!!: スペースシャトルと旅客機 · 続きを見る »

操縦桿

MiG-21の操縦桿。複数のスイッチがついている 小型飛行機の操縦輪 操縦桿(そうじゅうかん)とは航空機や宇宙機の進行方向を操縦するために、昇降舵や補助翼を操作するハンドル(取っ手)。.

新しい!!: スペースシャトルと操縦桿 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

新しい!!: スペースシャトルと放電 · 続きを見る »

政治学

政治学の領域図は''Modern Political Analysis''(ロバート・ダール著、1963年)に基づくもの。政治学は関連する3つの対象領域をもつ。図は3つの対象領域の関係性を表したものである。ある一定の権力(青部分)から見ると、この権力はある一定の価値(赤部分)に基づいて、ある一定の領域(黄部分)に影響を及ぼしていることを表している 社会関係図は池田義祐の研究に基づく。政治が成立する社会の基礎にはさまざまな関係が存在している。とくに政治と関連が深いのは図でいう上下関係の部分である 政治学(せいじがく、politics, political science, political studies,また特に科学性を強調する場合はscience of politicsというこの場合の「科学性」は何をどれだけ数値化することで検証対象にし得るかという問題に収斂されていることが多い。)は、政治を対象とする学問分野。なお政治学の研究者を政治学者と呼ぶ。日本では主に法学部で研究・教育が行われているが一部の私立大学では政治学と経済学両方の修養が国家統治にとって有用とされた経緯から政治経済学部で教えられている。 大別すると広義の政治哲学と広義の政治過程論の二領域にわたるが、狭義には政治過程論のみを指す。.

新しい!!: スペースシャトルと政治学 · 続きを見る »

慣性上段ロケット

慣性上段ロケット(かんせいじょうだんロケット、Inertial Upper Stage: IUS, 元々は Interim Upper Stageとして知られていた)とは、二段構成の固体ロケットエンジンである。アメリカ空軍によって開発された。開発目的はタイタンIIIロケット、タイタン 34D、(後にタイタンIV)、またはスペースシャトルの貨物室から重くて大きなペイロードを打ち上げるためである。.

新しい!!: スペースシャトルと慣性上段ロケット · 続きを見る »

10月11日

10月11日(じゅうがつじゅういちにち)はグレゴリオ暦で年始から284日目(閏年では285日目)にあたり、年末まであと81日ある。.

新しい!!: スペースシャトルと10月11日 · 続きを見る »

10月12日

10月12日(じゅうがつじゅうににち)はグレゴリオ暦で年始から285日目(閏年では286日目)にあたり、年末まであと80日ある。.

新しい!!: スペースシャトルと10月12日 · 続きを見る »

10月26日

10月26日(じゅうがつにじゅうろくにち)はグレゴリオ暦で年始から299日目(閏年では300日目)にあたり、年末まであと66日ある。.

新しい!!: スペースシャトルと10月26日 · 続きを見る »

10月3日

10月3日(じゅうがつみっか)はグレゴリオ暦で年始から276日目(閏年では277日目)にあたり、年末まであと89日ある。.

新しい!!: スペースシャトルと10月3日 · 続きを見る »

11月11日

11月11日(じゅういちがつじゅういちにち)はグレゴリオ暦で年始から315日目(閏年では316日目)にあたり、年末まであと50日ある。.

新しい!!: スペースシャトルと11月11日 · 続きを見る »

11月19日

11月19日(じゅういちがつじゅうくにち)はグレゴリオ暦で年始から323日目(閏年では324日目)にあたり、年末まであと42日ある。.

新しい!!: スペースシャトルと11月19日 · 続きを見る »

12月23日

12月23日(じゅうにがつにじゅうさんにち)はグレゴリオ暦で年始から357日目(閏年では358日目)にあたり、年末まであと8日ある。.

新しい!!: スペースシャトルと12月23日 · 続きを見る »

1954年

記載なし。

新しい!!: スペースシャトルと1954年 · 続きを見る »

1957年

記載なし。

新しい!!: スペースシャトルと1957年 · 続きを見る »

1966年

記載なし。

新しい!!: スペースシャトルと1966年 · 続きを見る »

1967年

記載なし。

新しい!!: スペースシャトルと1967年 · 続きを見る »

1968年

記載なし。

新しい!!: スペースシャトルと1968年 · 続きを見る »

1969年

記載なし。

新しい!!: スペースシャトルと1969年 · 続きを見る »

1973年

記載なし。

新しい!!: スペースシャトルと1973年 · 続きを見る »

1977年

記載なし。

新しい!!: スペースシャトルと1977年 · 続きを見る »

1980年代

1980年代(せんきゅうひゃくはちじゅうねんだい)は、西暦(グレゴリオ暦)1980年から1989年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1980年代について記載する。.

新しい!!: スペースシャトルと1980年代 · 続きを見る »

1981年

この項目では、国際的な視点に基づいた1981年について記載する。.

新しい!!: スペースシャトルと1981年 · 続きを見る »

1982年

この項目では、国際的な視点に基づいた1982年について記載する。.

新しい!!: スペースシャトルと1982年 · 続きを見る »

1983年

この項目では、国際的な視点に基づいた1983年について記載する。.

新しい!!: スペースシャトルと1983年 · 続きを見る »

1984年

この項目では、国際的な視点に基づいた1984年について記載する。.

新しい!!: スペースシャトルと1984年 · 続きを見る »

1985年

この項目では、国際的な視点に基づいた1985年について記載する。.

新しい!!: スペースシャトルと1985年 · 続きを見る »

1986年

この項目では、国際的な視点に基づいた1986年について記載する。.

新しい!!: スペースシャトルと1986年 · 続きを見る »

1988年

この項目では、国際的な視点に基づいた1988年について記載する。.

新しい!!: スペースシャトルと1988年 · 続きを見る »

1989年

この項目では、国際的な視点に基づいた1989年について記載する。.

新しい!!: スペースシャトルと1989年 · 続きを見る »

1990年

この項目では、国際的な視点に基づいた1990年について記載する。.

新しい!!: スペースシャトルと1990年 · 続きを見る »

1990年代

1990年代(せんきゅうひゃくきゅうじゅうねんだい)は、西暦(グレゴリオ暦)1990年から1999年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1990年代について記載する。.

新しい!!: スペースシャトルと1990年代 · 続きを見る »

1992年

この項目では、国際的な視点に基づいた1992年について記載する。.

新しい!!: スペースシャトルと1992年 · 続きを見る »

1993年

この項目では、国際的な視点に基づいた1993年について記載する。.

新しい!!: スペースシャトルと1993年 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: スペースシャトルと1995年 · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: スペースシャトルと1996年 · 続きを見る »

1月28日

1月28日(いちがつにじゅうはちにち)はグレゴリオ暦で年始から28日目に当たり、年末まであと337日(閏年では338日)ある。.

新しい!!: スペースシャトルと1月28日 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: スペースシャトルと2000年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: スペースシャトルと2001年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: スペースシャトルと2003年 · 続きを見る »

2005年

この項目では、国際的な視点に基づいた2005年について記載する。.

新しい!!: スペースシャトルと2005年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: スペースシャトルと2007年 · 続きを見る »

2008年

この項目では、国際的な視点に基づいた2008年について記載する。.

新しい!!: スペースシャトルと2008年 · 続きを見る »

2009年

この項目では、国際的な視点に基づいた2009年について記載する。.

新しい!!: スペースシャトルと2009年 · 続きを見る »

2010年

この項目では、国際的な視点に基づいた2010年について記載する。.

新しい!!: スペースシャトルと2010年 · 続きを見る »

2011年

この項目では、国際的な視点に基づいた2011年について記載する。.

新しい!!: スペースシャトルと2011年 · 続きを見る »

2月18日

2月18日(にがつじゅうはちにち)はグレゴリオ暦で年始から49日目にあたり、年末まであと316日(閏年では317日)ある。.

新しい!!: スペースシャトルと2月18日 · 続きを見る »

2月1日

2月1日(にがつついたち)はグレゴリオ暦で年始から32日目にあたり、年末まであと333日(閏年では334日)ある。.

新しい!!: スペースシャトルと2月1日 · 続きを見る »

2月24日

2月24日(にがつにじゅうよっか、にがつにじゅうよんにち)は、グレゴリオ暦で年始から55日目にあたり、年末まであと310日(閏年では311日)ある。グレゴリオ暦では、閏年の場合に限り、閏日とも呼ばれる。詳細は閏日の項を参照。.

新しい!!: スペースシャトルと2月24日 · 続きを見る »

2月8日

2月8日(にがつようか)はグレゴリオ暦で年始から39日目にあたり、年末まであと326日(閏年では327日)ある。.

新しい!!: スペースシャトルと2月8日 · 続きを見る »

4月12日

4月12日(しがつじゅうににち)はグレゴリオ暦で年始から102日目(閏年では103日目)にあたり、年末まではあと263日ある。誕生花はアンズ、カタクリ。.

新しい!!: スペースシャトルと4月12日 · 続きを見る »

4月24日

4月24日(しがつにじゅうよっか、しがつにじゅうよんにち)はグレゴリオ暦で年始から114日目(閏年では115日目)にあたり、年末まではあと251日ある。誕生花はシャクヤク。.

新しい!!: スペースシャトルと4月24日 · 続きを見る »

4月29日

4月29日(しがつにじゅうくにち)は、グレゴリオ暦で年始から119日目(閏年では120日目)にあたり、年末まではあと246日ある。誕生花はフジ、ミヤコグサ。.

新しい!!: スペースシャトルと4月29日 · 続きを見る »

4月4日

4月4日(しがつよっか)は、グレゴリオ暦で年始から94日目(閏年では95日目)にあたり、年末まであと271日ある。誕生花はアジアンタム、トリテリア。.

新しい!!: スペースシャトルと4月4日 · 続きを見る »

5月14日

5月14日(ごがつじゅうよっか、ごがつじゅうよんにち)はグレゴリオ暦で年始から134日目(閏年では135日目)にあたり、年末まではあと231日ある。誕生花はシラン。.

新しい!!: スペースシャトルと5月14日 · 続きを見る »

5月4日

5月4日(ごがつよっか)はグレゴリオ暦で年始から124日目(閏年では125日目)にあたり、年末まではあと241日ある。誕生花はヤマブキ。.

新しい!!: スペースシャトルと5月4日 · 続きを見る »

5月7日

5月7日(ごがつなのか)はグレゴリオ暦で年始から127日目(閏年では128日目)にあたり、年末まではあと238日ある。誕生花はボタン。.

新しい!!: スペースシャトルと5月7日 · 続きを見る »

7月25日

7月25日(しちがつにじゅうごにち)はグレゴリオ暦で年始から206日目(閏年では207日目)にあたり、年末まであと159日ある。誕生花はインパチェンス、スイセンノウ。.

新しい!!: スペースシャトルと7月25日 · 続きを見る »

7月8日

7月8日(しちがつようか)はグレゴリオ暦で年始から189日目(閏年では190日目)にあたり、年末まであと176日ある。誕生花はホオズキ、クロユリ。.

新しい!!: スペースシャトルと7月8日 · 続きを見る »

8月12日

8月12日(はちがつじゅうににち)はグレゴリオ暦で年始から224日目(閏年では225日目)にあたり、年末まであと141日ある。.

新しい!!: スペースシャトルと8月12日 · 続きを見る »

8月30日

8月30日(はちがつさんじゅうにち)は、グレゴリオ暦で年始から242日目(閏年では243日目)にあたり、年末まであと123日ある。.

新しい!!: スペースシャトルと8月30日 · 続きを見る »

9月29日

9月29日(くがつにじゅうくにち)はグレゴリオ暦で年始から272日目(閏年では273日目)にあたり、年末まであと93日ある。.

新しい!!: スペースシャトルと9月29日 · 続きを見る »

ここにリダイレクトされます:

スペース・シャトル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »