ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想

ショートカット: 違い類似点ジャカード類似性係数参考文献

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想の違い

ジョン・テイト vs. バーチ・スウィンナートン=ダイアー予想

ョン・テイト(John Torrence Tate, 1925年3月13日 - )は、アメリカの数学者。 Emil Artinのもとで1950年プリンストン大学で学位を取得。長年ハーバード大学に勤め、現在はテキサス大学オースティン校教授。ミネソタ州ミネアポリス生まれ。 現在の研究範囲は代数的整数論、類体論、Galois Cohomology、Galois表現、L関数とその特殊値、Modular形式、楕円曲線、Abel多様体. 数学において、バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの ''L''-関数 L(E, s) の s.

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想間の類似点

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想は(ユニオンペディアに)共通で2ものを持っています: L-函数楕円曲線

L-函数

数学で、L-函数(L-function)は複素平面上の有理型函数であり、いくつかの数学的対象のカテゴリから出てくる有理型函数に付帯している。L-級数(L-series)は、ディリクレ級数であり、大抵は半平面上で収束し、解析接続を通してL-函数を導くとみられる。 L-函数の理論は、非常に重要であり、未だ予想の段階のものも多く、現代の解析的整数論の分野である。そこでは、リーマンゼータ函数や、ディリクレ指標におけるL-級数の、広い一般化が構成されており、それらの一般的性質は、大半の場合が証明されていなく、系統的な方法なく研究されている。.

L-函数とジョン・テイト · L-函数とバーチ・スウィンナートン=ダイアー予想 · 続きを見る »

楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

ジョン・テイトと楕円曲線 · バーチ・スウィンナートン=ダイアー予想と楕円曲線 · 続きを見る »

上記のリストは以下の質問に答えます

ジョン・テイトとバーチ・スウィンナートン=ダイアー予想の間の比較

バーチ・スウィンナートン=ダイアー予想が48を有しているジョン・テイトは、19の関係を有しています。 彼らは一般的な2で持っているように、ジャカード指数は2.99%です = 2 / (19 + 48)。

参考文献

この記事では、ジョン・テイトとバーチ・スウィンナートン=ダイアー予想との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »