ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

コレステロールとノーベル生理学・医学賞

ショートカット: 違い類似点ジャカード類似性係数参考文献

コレステロールとノーベル生理学・医学賞の違い

コレステロール vs. ノーベル生理学・医学賞

レステロール (cholesterol) とは、ステロイドに分類され、その中でもステロールと呼ばれるサブグループに属する有機化合物の一種である。1784年に胆石からコレステロールが初めて単離された。室温で単離された場合は白色ないしは微黄色の固体である。生体内ではスクアレンからラノステロールを経て生合成される。 コレステロール分子自体は、動物細胞にとっては生体膜の構成物質であったり、さまざまな生命現象に関わる重要な化合物である。よって生体において、広く分布しており、主要な生体分子といえる。また、化粧品・医薬品・液晶の原材料など工業原料としても利用される。 食物由来のコレステロールのほとんどは動物性食品に由来する。卵黄に多量に含まれる。そのため卵の摂取量はしばしば研究の対象となる。植物のフィトステロールは血漿中のコレステロール量を下げるとされる。 いわゆる「善玉/悪玉コレステロール」と呼ばれる物は、コレステロールが血管中を輸送される際のコレステロールとリポタンパク質が作る複合体を示し、コレステロール分子自体を指すものではない。善玉と悪玉の違いは複合体を作るリポタンパク質の違いであり、これにより血管内での振る舞いが変わることに由来する。これらのコレステロールを原料とする複合体分子が血液の状態を計る血液検査の指標となっている。. ノーベル生理学・医学賞(ノーベルせいりがく・いがくしょう、Nobelpriset i fysiologi eller medicin)はノーベル賞6部門のうちの一つ。「生理学および医学の分野で最も重要な発見を行った」人物に与えられる。選考はカロリンスカ研究所のノーベル賞委員会が行う。 ノーベル生理学・医学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には膝の上に本を広げつつ、病気の少女のために岩から流れる水を汲んでいる医者の姿がデザインされている。.

コレステロールとノーベル生理学・医学賞間の類似点

コレステロールとノーベル生理学・医学賞は(ユニオンペディアに)共通で35ものを持っています: マイケル・ブラウン (遺伝学者)ヒトビタミンビタミンAビタミンKフェオドル・リュネンホルモングリコーゲンコレステロールコンラート・ブロッホジョーゼフ・ゴールドスタインタンパク質副腎皮質ホルモン器官神経系神経細胞神経繊維細胞真正細菌生合成生理学遺伝子血管貧血肝臓脂肪酸酸素酵素消化...消化性潰瘍感染症1927年1964年1985年 インデックスを展開 (5 もっと) »

マイケル・ブラウン (遺伝学者)

マイケル・スチュアート・ブラウン(Michael Stuart Brown, 1941年4月13日 - )はアメリカ合衆国の遺伝学者。コレステロールの代謝とその関与する疾患の研究により、ヨセフ・ゴールドスタインと共に1985年にノーベル生理学・医学賞を受賞した。 ニューヨーク・ブルックリン区出身。1962年にペンシルベニア大学を卒業し、1966年にペンシルベニア大学 医学大学院にてM.D.を取得した。その後、テキサス大学サウスウェスタンメディカルセンターへと移り、現在は同校の教授を務めている。ダラスでは、同僚のゴールドスタインと共にコレステロールの代謝を研究し、人間の細胞が、血流からコレステロールを抽出する低密度リポプロテイン(LDL)受容体を持っていることを発見した。LDL受容体の不足は、家族性高コレステロール血に関係する。この家族性高コレステロール血はコレステロールに関連する疾患を引き起こしやすい。.

コレステロールとマイケル・ブラウン (遺伝学者) · ノーベル生理学・医学賞とマイケル・ブラウン (遺伝学者) · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

コレステロールとヒト · ノーベル生理学・医学賞とヒト · 続きを見る »

ビタミン

ビタミン(ヴィタミン、 )は、生物の生存・生育に微量に必要な栄養素のうち、炭水化物・タンパク質・脂質以外の有機化合物の総称である(なお栄養素のうち無機物はミネラルである)。 生物種によってビタミンとして働く物質は異なる。たとえばアスコルビン酸はヒトにはビタミンCだが、多くの生物にはそうではない。ヒトのビタミンは13種が認められている。 ビタミンは機能で分類され、物質名ではない。たとえばビタミンAはレチナール、レチノールなどからなる。 ビタミンはほとんどの場合、生体内で十分量合成することができないので、主に食料から摂取される(一部は腸内細菌から供給される)。ビタミンが不足すると、疾病や成長障害が起こりうる(ビタミン欠乏症)。日本では厚生労働省が日本人の食事摂取基準によって各ビタミンの指標を定めており、摂取不足の回避を目的とする3種類の指標と、過剰摂取による健康障害の回避を目的とする指標、及び生活習慣病の予防を目的とする指標から構成されている。.

コレステロールとビタミン · ノーベル生理学・医学賞とビタミン · 続きを見る »

ビタミンA

ビタミンA (Vitamin A) とは、レチノール(Retinol、ビタミンAアルコールとも呼ばれる)、レチナール(Retinal、ビタミンAアルデヒドとも)、レチノイン酸(Retinoic Acid、ビタミンA酸とも)(これらをビタミンA1と呼ぶ)およびこれらの3-デヒドロ体(ビタミンA2と呼ぶ)と、その誘導体の総称で、ビタミンの中の脂溶性ビタミンに分類される。化学的にはレチノイドと呼ばれる。狭義にはレチノールのみを指してビタミンAと呼ぶこともある。ビタミンAは動物にのみに見られる。なお、β-カロテンなど、動物体内においてビタミンAに変換されるものを総称してプロビタミンAと呼ぶ。プロビタミンAは動植物ともに見られる。.

コレステロールとビタミンA · ノーベル生理学・医学賞とビタミンA · 続きを見る »

ビタミンK

ビタミンK (Vitamin K) は、脂溶性ビタミンの一種である。ビタミンK依存性タンパク質の活性化に必須であり、動物体内で血液の凝固や組織の石灰化に関わっている。したがって欠乏すると出血傾向となり、また骨粗鬆症や動脈硬化に関連していると考えられている。化学構造上は2-メチル-1,4-ナフトキノンの3位誘導体で、天然にはK1とK2の2種類があり、このうちK2にはイソプレノイド側鎖の長さや修飾が異なる多数の化合物が含まれる。.

コレステロールとビタミンK · ノーベル生理学・医学賞とビタミンK · 続きを見る »

フェオドル・リュネン

フェオドル・フェリックス・コンラド・リュネン(Feodor Felix Konrad Lynen, 1911年4月6日 - 1979年8月6日)は、ドイツの生化学者。 ミュンヘンで生まれた。1930年にミュンヘン大学で化学を学び始め、ハインリッヒ・ヴィーラントの下でテングタケの毒性物質についての研究を行い、1937年に卒業した。1941年にミュンヘン大学講師、1947年ミュンヘン大学員外教授、1953年ミュンヘン大学教授となった。1954年からは同年新設されたミュンヘンのマックス・プランク細胞化学研究所の研究所長を兼任した。1972年にいくつかのマックス・プランク研究所が統合されて新設されたマックス・プランク生化学研究所の初代所長となった。 1950年リップマンらによって考えられた活性酢酸の実体が酢酸と補酵素A(CoA)のチオエステルである(アセチルCoAの発見)ことを証明した。ついで「Lynenのサイクル」と呼ばれる脂肪酸のβ酸化機構を解明したのち、脂肪酸の生合成に関与する多酵素複合体を明らかにした。またコレステロールの生合成やビオチンの作用機構に関して重要な発見をした。これらの業績に対し、 1964年、コレステロールや脂肪酸の代謝の機構や制御に関する研究でコンラート・ブロッホとともにノーベル生理学・医学賞を受賞した。同年12月11日に行われた受賞講演では、「活性型酢酸からテルペン、脂肪酸への代謝経路」という題で講演を行った。 国際生化学会の会長を務めるなど、学問の国際交流にも貢献した。 親日家としても知られ、渡独した沼正作ら日本人科学者を受け入れて指導したことでも知られている。9回来日し、勲二等旭日重光章を贈られた。.

コレステロールとフェオドル・リュネン · ノーベル生理学・医学賞とフェオドル・リュネン · 続きを見る »

ホルモン

ホルモン(Hormon、hormone)は、狭義には生体の外部や内部に起こった情報に対応し、体内において特定の器官で合成・分泌され、血液など体液を通して体内を循環し、別の決まった細胞でその効果を発揮する生理活性物質を指す生化学辞典第2版、p.1285 【ホルモン】。ホルモンが伝える情報は生体中の機能を発現させ、恒常性を維持するなど、生物の正常な状態を支え、都合よい状態にする生化学辞典第2版、p.1285 【ホルモン作用】重要な役割を果たす。ただし、ホルモンの作用については未だわかっていない事が多い。.

コレステロールとホルモン · ノーベル生理学・医学賞とホルモン · 続きを見る »

グリコーゲン

リコーゲンの構造 グリコーゲン (glycogen) あるいは糖原(とうげん)とは、多数のα-D-グルコース(ブドウ糖)分子がグリコシド結合によって重合し、枝分かれの非常に多い構造になった高分子である。動物における貯蔵多糖として知られ、動物デンプンとも呼ばれる。植物デンプンに含まれるアミロペクチンよりもはるかに分岐が多く、8~12残基に一回の分岐となる。直鎖部分の長さは12~18残基、分岐の先がさらに分岐し、網目構造をとる。英語の発音から「グライコジェン」と呼ばれることもある。 グリコーゲンは肝臓と骨格筋で主に合成され、余剰のグルコースを一時的に貯蔵しておく意義がある。糖分の貯蔵手段としてはほかに、脂肪とアミノ酸という形によるものがある。 脂肪酸という形でしかエネルギーを取り出せない脂肪や、合成分解に窒素代謝の必要なアミノ酸と違い、グリコーゲンは直接ブドウ糖に分解できるという利点がある。 ただし、脂肪ほど多くのエネルギーを貯蔵する目的には向かず、食後などの一時的な血糖過剰に対応している。 肝細胞は、食後直後に肝臓の重量の8 %(大人で100-120 g)までのグリコーゲンを蓄えることができる。本稿の「分解」の節で述べられているように肝臓に蓄えられたグリコーゲンのみが他の臓器でも利用することができる。骨格筋中ではグリコーゲンは骨格筋重量の1-2 %程度の低い濃度でしか貯蔵できない。筋肉は、体重比で成人男性の42%、同女性の36%を占める。このため体格等にもよるが大人で300g前後のグリコーゲンを蓄えることができる。 グリコーゲンの合成・分解は甲状腺、膵臓、副腎がそれぞれ血糖に応じてサイロキシン、グルカゴン及びインスリン、アドレナリンなどを分泌することで調整される。 なお、肝臓で合成されたグリコーゲンと骨格筋で合成されたそれとでは分子量が数倍異なり、前者のほうが大きい。.

グリコーゲンとコレステロール · グリコーゲンとノーベル生理学・医学賞 · 続きを見る »

コレステロール

レステロール (cholesterol) とは、ステロイドに分類され、その中でもステロールと呼ばれるサブグループに属する有機化合物の一種である。1784年に胆石からコレステロールが初めて単離された。室温で単離された場合は白色ないしは微黄色の固体である。生体内ではスクアレンからラノステロールを経て生合成される。 コレステロール分子自体は、動物細胞にとっては生体膜の構成物質であったり、さまざまな生命現象に関わる重要な化合物である。よって生体において、広く分布しており、主要な生体分子といえる。また、化粧品・医薬品・液晶の原材料など工業原料としても利用される。 食物由来のコレステロールのほとんどは動物性食品に由来する。卵黄に多量に含まれる。そのため卵の摂取量はしばしば研究の対象となる。植物のフィトステロールは血漿中のコレステロール量を下げるとされる。 いわゆる「善玉/悪玉コレステロール」と呼ばれる物は、コレステロールが血管中を輸送される際のコレステロールとリポタンパク質が作る複合体を示し、コレステロール分子自体を指すものではない。善玉と悪玉の違いは複合体を作るリポタンパク質の違いであり、これにより血管内での振る舞いが変わることに由来する。これらのコレステロールを原料とする複合体分子が血液の状態を計る血液検査の指標となっている。.

コレステロールとコレステロール · コレステロールとノーベル生理学・医学賞 · 続きを見る »

コンラート・ブロッホ

ンラート・エミル・ブロッホ(Konrad Emil Bloch, 1912年1月21日 - 2000年10月15日)は、ドイツ出身のユダヤ系の生化学者。.

コレステロールとコンラート・ブロッホ · コンラート・ブロッホとノーベル生理学・医学賞 · 続きを見る »

ジョーゼフ・ゴールドスタイン

ョセフ・リオナルド・ゴールドスタイン(Joseph Leonard Goldstein、1940年4月18日 - )はアメリカ合衆国サウスカロライナ州キングスツリー出身の生化学者、遺伝学者。コレステロール代謝の研究の先駆者。テキサス大学医学部上席教授。 ワシントン・アンド・リー大学を卒業する。1985年、コレステロール代謝とその関与する疾患の研究によりマイケル・ブラウンと共にノーベル生理学・医学賞を受賞した。また、遺伝性疾患についての功績により多くの賞を受賞した。.

コレステロールとジョーゼフ・ゴールドスタイン · ジョーゼフ・ゴールドスタインとノーベル生理学・医学賞 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

コレステロールとタンパク質 · タンパク質とノーベル生理学・医学賞 · 続きを見る »

副腎皮質ホルモン

副腎皮質ホルモン(ふくじんひしつホルモン、Corticosteroid)は、副腎皮質より産生されるホルモンの総称である。炎症の制御、炭水化物の代謝、タンパク質の異化、血液の電解質のレベル、免疫反応など広範囲の生理学系に関わっている。ストレス、侵襲などさまざまな影響によって分泌され、医薬品としても使用される。.

コレステロールと副腎皮質ホルモン · ノーベル生理学・医学賞と副腎皮質ホルモン · 続きを見る »

器官

器官(きかん、organ)とは、生物のうち、動物や植物などの多細胞生物の体を構成する単位で、形態的に周囲と区別され、それ全体としてひとまとまりの機能を担うもののこと。生体内の構造の単位としては、多数の細胞が集まって組織を構成し、複数の組織が集まって器官を構成している。 細胞内にあって、細胞を構成する機能単位は、細胞小器官 (細胞内小器官、小器官、オルガネラ) を参照。.

コレステロールと器官 · ノーベル生理学・医学賞と器官 · 続きを見る »

神経系

経系(しんけいけい、)とは、主に神経細胞(ニューロン)の連鎖によって作られる神経を通して、外部の情報の伝達と処理を行う動物の器官生化学辞典第2版、p.668 【神経系】。 内容的には、一つの動物体における神経全体の配置のあり方を指す場合と、同一個体内での、神経の系統の大きな区別を指す場合がある。前者は動物の分類において、上位分類群を特徴付ける重要な特徴と見なされる。 また、神経系が情報を受け渡しする対象である「外部」にも2つの意味があり、ひとつは生体の外部を指す場合と、もうひとつは生体の内部ながら神経系の外部を指す場合の両方がある。.

コレステロールと神経系 · ノーベル生理学・医学賞と神経系 · 続きを見る »

神経細胞

経細胞(しんけいさいぼう、ニューロン、neuron)は、神経系を構成する細胞で、その機能は情報処理と情報伝達に特化しており、動物に特有である。なお、日本においては「神経細胞」という言葉でニューロン(neuron)ではなく神経細胞体(soma)を指す慣習があるが、本稿では「神経細胞」の語を、一つの細胞の全体を指して「ニューロン」と同義的に用いる。.

コレステロールと神経細胞 · ノーベル生理学・医学賞と神経細胞 · 続きを見る »

神経繊維

経繊維(しんけいせんい、神経線維とも、nerve fiber, axon)は、神経細胞の細胞体から延びる細長い突起で、実体は神経細胞の軸索(神経突起)である。あるいは、軸索と樹状突起を併せた総称。いずれも「神経線維」と言ったときは神経細胞の一部位というよりは、よりマクロ的な捉え方をしているものである。神経線維は活動電位の伝導に加え、神経終末と細胞体との間の物質交換に役立っている。肉眼で確認できる「神経」は、神経線維の束(神経線維束)とその周囲の結合組織からなる。.

コレステロールと神経繊維 · ノーベル生理学・医学賞と神経繊維 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

コレステロールと細胞 · ノーベル生理学・医学賞と細胞 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

コレステロールと真正細菌 · ノーベル生理学・医学賞と真正細菌 · 続きを見る »

生合成

生合成(せいごうせい)とは、生体がその構成成分である生体分子を作り出すことをいう。多くの生物に共通している基本的な化合物(アミノ酸、糖、脂肪酸、核酸など)を合成する経路を一次代謝、特定の種や科に特有の化合物(ホルモン、フェロモン、毒素など)を作り出す経路を二次代謝と呼ぶが、両者の区分は必ずしも明確ではない。 ひとつの化合物が生合成されるには単一の酵素でなく、酸化還元酵素、転移酵素、合成酵素、加水分解酵素など数多くの酵素が関わり、多数の段階を踏むことが普通である。 生合成が不可能な分子は、体外より栄養素として取り入れなければならず、こういった栄養素を必須栄養素と呼ぶ。ヒトにおいて生合成が不可能なアミノ酸、脂肪酸をそれぞれ必須アミノ酸、必須脂肪酸と呼び、栄養学において非常に重要である。さらに、生体内での代謝に必須でありながら、生合成できない補酵素群をビタミンと呼び、同様に生合成できないミネラルとともにこれらもまた、栄養学上重要である。 Category:生化学.

コレステロールと生合成 · ノーベル生理学・医学賞と生合成 · 続きを見る »

生理学

生理学(せいりがく、physiology)は、生命現象を機能の側面から研究する生物学の一分野。フランスの医師、生理学者であるによりこの用語が初めて導入された。.

コレステロールと生理学 · ノーベル生理学・医学賞と生理学 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

コレステロールと遺伝子 · ノーベル生理学・医学賞と遺伝子 · 続きを見る »

血管

血管(けっかん、blood vessel)は、血液を身体の各所に送るための通路となる管。全身へ酸素や栄養分、老廃物、体温(恒温動物の場合)、水分を運ぶ。血管中の血液を規則的に送るための筋肉に富む構造がある場合、これを心臓という。血管中の血液の流れる方向は普通一定している。脊椎動物の血管は心臓から出る血液を送る動脈と心臓へ戻る血液を送る静脈、そしてそれぞれの末端(細動脈と細静脈)をつなぐ毛細血管からなる。.

コレステロールと血管 · ノーベル生理学・医学賞と血管 · 続きを見る »

貧血

貧血(ひんけつ)とは血液が薄くなった状態である。医学的には、血液(末梢血)中のヘモグロビン(Hb)濃度、赤血球数、赤血球容積率(Ht)が減少し基準値未満になった状態として定義されるが浅野『三輪血液病学』p952、一般にはヘモグロビン濃度が基準値を下回った場合に貧血とされる小川『内科学書』 p64。 医療業界では、アネミー、アネミ、アニーミア(Anemia)ということもある。.

コレステロールと貧血 · ノーベル生理学・医学賞と貧血 · 続きを見る »

肝臓

肝臓(かんぞう、ἧπαρ (hepar)、iecur、Leber、Liver)は、哺乳類・鳥類・齧歯類・両生類・爬虫類・魚類等の脊椎動物に存在する臓器の一つ。 ヒトの場合は腹部の右上に位置する内臓である。ヒトにおいては最大の内臓であり、体内維持に必須の機能も多く、特に生体の内部環境の維持に大きな役割を果たしている。 本稿では主にヒトについて記載する。.

コレステロールと肝臓 · ノーベル生理学・医学賞と肝臓 · 続きを見る »

脳(のう、brain、Gehirn、encephalon、ἐγκέφαλος, enkephalos)は、動物の頭部にある、神経系の中枢。狭義には脊椎動物のものを指すが、より広義には無脊椎動物の頭部神経節をも含む。脊髄とともに中枢神経系をなし、感情・思考・生命維持その他神経活動の中心的、指導的な役割を担う。 人間の脳は、大脳、間脳、脳幹(中脳、橋、延髄)、小脳の4種類の領域に分類される。 この内、脳幹は、中脳、後脳、延髄に3種類の領域に分類される。 つまり、人間の脳は、大脳、間脳、中脳、後脳、小脳、延髄の6種類の領域に分類される。.

コレステロールと脳 · ノーベル生理学・医学賞と脳 · 続きを見る »

脂肪酸

脂肪酸(しぼうさん、Fatty acid)とは、長鎖炭化水素の1価のカルボン酸である。一般的に、炭素数2-4個のものを短鎖脂肪酸(低級脂肪酸)、5-12個のものを中鎖脂肪酸、12個以上のものを長鎖脂肪酸(高級脂肪酸)と呼ぶ。炭素数の区切りは諸説がある。脂肪酸は、一般式 CnHmCOOH で表せる。脂肪酸はグリセリンをエステル化して油脂を構成する。脂質の構成成分として利用される。 広義には油脂や蝋、脂質などの構成成分である有機酸を指すが、狭義には単に鎖状のモノカルボン酸を示す場合が多い。炭素数や二重結合数によって様々な呼称があり、鎖状のみならず分枝鎖を含む脂肪酸も見つかっている。また環状構造を持つ脂肪酸も見つかってきている。.

コレステロールと脂肪酸 · ノーベル生理学・医学賞と脂肪酸 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

コレステロールと酸素 · ノーベル生理学・医学賞と酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

コレステロールと酵素 · ノーベル生理学・医学賞と酵素 · 続きを見る »

消化

消化(しょうか、digestion)とは、生物が摂取した物質を分解処理して利用可能な栄養素にする過程のことである生化学辞典第2版、p.648 【消化】。消化は、生体の体内や体外、細胞内または細胞外、機械的に破砕する物理的手段やコロイド・分子レベルまで分解する化学的手段などがあり、消化器ごとにも分類される。.

コレステロールと消化 · ノーベル生理学・医学賞と消化 · 続きを見る »

消化性潰瘍

消化性潰瘍(しょうかせいかいよう、英: peptic ulcer)は、主に胃酸が要因となって生じる潰瘍のことである。 胃癌等の悪性腫瘍も潰瘍病変を呈するが本稿では良性の潰瘍について記述する。.

コレステロールと消化性潰瘍 · ノーベル生理学・医学賞と消化性潰瘍 · 続きを見る »

感染症

感染症(かんせんしょう、英語:infectious disease)とは、寄生虫、細菌、真菌、ウイルス、異常プリオン等の病原体の感染により、「宿主」に生じる望まれざる反応(病気)の総称。.

コレステロールと感染症 · ノーベル生理学・医学賞と感染症 · 続きを見る »

1927年

記載なし。

1927年とコレステロール · 1927年とノーベル生理学・医学賞 · 続きを見る »

1964年

記載なし。

1964年とコレステロール · 1964年とノーベル生理学・医学賞 · 続きを見る »

1985年

この項目では、国際的な視点に基づいた1985年について記載する。.

1985年とコレステロール · 1985年とノーベル生理学・医学賞 · 続きを見る »

上記のリストは以下の質問に答えます

コレステロールとノーベル生理学・医学賞の間の比較

ノーベル生理学・医学賞が513を有しているコレステロールは、314の関係を有しています。 彼らは一般的な35で持っているように、ジャカード指数は4.23%です = 35 / (314 + 513)。

参考文献

この記事では、コレステロールとノーベル生理学・医学賞との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »