ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

コホモロジーとホモロジー (数学)

ショートカット: 違い類似点ジャカード類似性係数参考文献

コホモロジーとホモロジー (数学)の違い

コホモロジー vs. ホモロジー (数学)

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。. 数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

コホモロジーとホモロジー (数学)間の類似点

コホモロジーとホモロジー (数学)は(ユニオンペディアに)共通で14ものを持っています: 代数的位相幾何学位相空間ホモロジー (数学)ホモロジー代数学アーベル群サミュエル・アイレンベルグ群 (数学)群のコホモロジー特異ホモロジー鎖複体関手抽象代数学次元数学

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

コホモロジーと代数的位相幾何学 · ホモロジー (数学)と代数的位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

コホモロジーと位相空間 · ホモロジー (数学)と位相空間 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

コホモロジーとホモロジー (数学) · ホモロジー (数学)とホモロジー (数学) · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

コホモロジーとホモロジー代数学 · ホモロジー (数学)とホモロジー代数学 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

アーベル群とコホモロジー · アーベル群とホモロジー (数学) · 続きを見る »

サミュエル・アイレンベルグ

サミュエル・アイレンベルグ(Samuel Eilenberg, 1913年9月30日 - 1998年1月30日)はポーランドのワルシャワ出身の数学者である。ワルシャワ大学で博士号取得、長年コロンビア大学数学科教授を務めた。数学者集団ブルバキのメンバーでもあった。 代数的位相幾何学、ホモロジー代数に大きな業績を残した。 1986年にウルフ賞数学部門受賞。 Category:ポーランドの数学者 Category:位相幾何学者 Category:ウルフ賞数学部門受賞者 Category:グッゲンハイム・フェロー 130930 Category:ブルバキ Category:コロンビア大学の教員 Category:ワルシャワ出身の人物 Category:1913年生 Category:1998年没 Category:数学に関する記事.

コホモロジーとサミュエル・アイレンベルグ · サミュエル・アイレンベルグとホモロジー (数学) · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

コホモロジーと群 (数学) · ホモロジー (数学)と群 (数学) · 続きを見る »

群のコホモロジー

数学、とくにホモロジー代数学において、群のコホモロジー(group cohomology)とは代数的トポロジーに由来する技法であるコホモロジー論を使って群を研究するために使われる数学的な道具立てである。群の表現のように、群のコホモロジーは群 の G 加群への作用をみることで、その群の性質を明らかにする。 加群を の元が n 単体を表す位相空間のように扱うことで、コホモロジー群 などの位相的な性質が計算できる。コホモロジー群は群 や 加群 の構造に関する洞察を与える。群のコホモロジーは加群や空間への群作用の固定点や群作用に関する商加群や商空間を研究において一定の役割を果たす。群のコホモロジーは群論そのものへの応用はもちろん、抽象代数・ホモロジー代数・代数的トポロジー・代数的整数論などの分野でも用いられている。代数的トポロジーには、群のホモロジーと呼ばれる双対理論がある。 これらの代数的な概念は位相的な概念と密接に関連している。離散群 の群のコホモロジーは を基本群とする適当な空間——つまり対応する——の特異コホモロジーである。したがって のコホモロジーは円 の特異コホモロジーと思うことができ、同様に のコホモロジーは の特異コホモロジーと思うことができる。 群のコホモロジーについては非常に多くのこと——低次コホモロジーの解釈・関手性・群の変更——が知られている。群のコホモロジーに関する主題は1920年代に始まり、1940年代後半に発達し、現在でも活発に研究が続いている。.

コホモロジーと群のコホモロジー · ホモロジー (数学)と群のコホモロジー · 続きを見る »

特異ホモロジー

数学の一分野である代数トポロジーにおいて、特異ホモロジー (singular homology) とは位相空間 X ののある種の集合、いわゆるホモロジー群 (homology group) H_n(X) の研究のことである。直感的に言えば、特異ホモロジーは、各次元 n に対して、空間の n 次元の穴を数える。特異ホモロジーはホモロジー論の例である。これは今では理論のかなり大きな集まりに成長している。様々な理論の中で、特異ホモロジーはかなり具体的な構成に基づいているのでおそらく理解するのが容易なものの1つである。 手短に言えば、特異ホモロジーは標準 ''n''-単体から位相空間への写像をとり、それらから特異チェイン (singular chain) と呼ばれる形式和を作ることによって構成される。単体上の境界作用素は特異チェイン複体を誘導する。すると特異ホモロジーはそのチェイン複体のホモロジーである。得られるホモロジー群はすべてのホモトピー同値な空間に対して同じであり、これがそれらの研究の理由である。これらの構成はすべての位相空間に対して適用することができるので、特異ホモロジーは圏論の言葉で表現できる。そこではホモロジー群は位相空間の圏から次数付きアーベル群の圏への関手になる。これらのアイデアは以下でもっと詳細に説明される。.

コホモロジーと特異ホモロジー · ホモロジー (数学)と特異ホモロジー · 続きを見る »

鎖複体

数学において、鎖複体あるいはチェイン複体 (chain complex) と双対鎖複体あるいは余鎖複体、コチェイン複体 (cochain complex) は、元来は代数トポロジーの分野で使われていた。(余)鎖複体は、位相空間の様々な次元の(コ)と(コ)バウンダリの間の関係を表す代数的な手段である。より一般的に、ホモロジー代数では、空間との関係を立ち去った抽象的な鎖複体の研究がされる。ホモロジー代数としての研究では、(余)鎖複体を公理的に代数的構造として扱う。 (余)鎖複体の応用は、通常、ホモロジー群(余鎖複体ではコホモロジー群)を定義し適用する。より抽象的な設定では、様々な同値関係(たとえば、のアイデアで始まるもの)が複体へ適用される。鎖複体は、アーベル圏で定義することも容易にできる。.

コホモロジーと鎖複体 · ホモロジー (数学)と鎖複体 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

コホモロジーと関手 · ホモロジー (数学)と関手 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

コホモロジーと抽象代数学 · ホモロジー (数学)と抽象代数学 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

コホモロジーと次元 · ホモロジー (数学)と次元 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

コホモロジーと数学 · ホモロジー (数学)と数学 · 続きを見る »

上記のリストは以下の質問に答えます

コホモロジーとホモロジー (数学)の間の比較

ホモロジー (数学)が37を有しているコホモロジーは、51の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は15.91%です = 14 / (51 + 37)。

参考文献

この記事では、コホモロジーとホモロジー (数学)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »