ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

グロモフ・ウィッテン不変量と安定写像

ショートカット: 違い類似点ジャカード類似性係数参考文献

グロモフ・ウィッテン不変量と安定写像の違い

グロモフ・ウィッテン不変量 vs. 安定写像

数学、特にシンプレクティックトポロジーや代数幾何学では、グロモフ・ウィッテン(GW)不変量(Gromov–Witten (GW) invariant)は、ある状況下では、与えられたシンプレクティック多様体の中で決められた条件にあう(pseudoholomorphic curve)を数える有理数である。GW不変量は、ホモロジーやコホモロジー類として適切な空間の中に実現され、あるいは量子コホモロジーの変形されたカップ積として実現される。これらの不変量は、以前は識別できなかったシンプレクティック多様体を識別することに使われる。GW不変量はまた、閉じたタイプ IIA弦理論で重要な役目を果たす。GW不変量は、ミハイル・グロモフ(Mikhail Leonidovich Gromov)とエドワード・ウィッテン(Edward Witten)の名前にちなんでいる。 数学的に厳密なグロモフ・ウィッテン不変量の定義は、長く難しいので、安定写像という記事と分けて扱う。本記事では、何が不変を意味するか、どのようにして計算するか、なぜグロモフ・ウィッテン不変量が重要なのかのより直感的な説明を試みる。. 数学、特にシンプレクティックトポロジーや代数幾何学では、リーマン面から与えられるシンプレクティック多様体への特別な条件を満たす安定写像(stable maps)のモジュライ空間を構成することができる。このモジュライ空間が、グロモフ・ウィッテン不変量の本質的であり、数え上げ幾何学やなどの弦理論への応用がある。安定写像の考え方は、マキシム・コンツェビッチ(Maxim Kontsevich)により、1992年頃に提案され、で出版された。 安定写像を構成することは長く難しいので、グロモフ・ウィッテン不変量の記事の中ではなく、むしろ本記事で展開する。.

グロモフ・ウィッテン不変量と安定写像間の類似点

グロモフ・ウィッテン不変量と安定写像は(ユニオンペディアに)共通で8ものを持っています: 代数幾何学モジュライ空間ホモロジー (数学)シンプレクティック多様体シンプレクティック幾何学概複素構造有理数数学

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

グロモフ・ウィッテン不変量と代数幾何学 · 代数幾何学と安定写像 · 続きを見る »

モジュライ空間

代数幾何学では、モジュライ空間(moduli space)とは(普通、スキーム、もしくは(algebraic stack))空間の点が、決められた種類の代数幾何学的な対象を表す点となっている、もしくは、そのような対象と(isomorphism class)を表現している点からなる幾何学的な空間のことを言う。そのような空間はしばしば分類問題の解として現れる。注目している対象の集まり(例えば、決められた種数を持つ滑らかな代数曲線のような)へ幾何学的空間の構造を与えることができると、出来上がる空間に座標を導入することで対象をパラメータ化することができる。この脈絡では、「モジュラス」という用語は「パラメータ」と同じような意味に使われる。モジュライ空間は、初期には、対象の空間というよりはパラメータの空間として理解されていた。.

グロモフ・ウィッテン不変量とモジュライ空間 · モジュライ空間と安定写像 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

グロモフ・ウィッテン不変量とホモロジー (数学) · ホモロジー (数学)と安定写像 · 続きを見る »

シンプレクティック多様体

数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。.

グロモフ・ウィッテン不変量とシンプレクティック多様体 · シンプレクティック多様体と安定写像 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

グロモフ・ウィッテン不変量とシンプレクティック幾何学 · シンプレクティック幾何学と安定写像 · 続きを見る »

概複素構造

数学における多様体の概複素構造(がいふくそこうぞう、almost complex structure)は、多様体の各点での接ベクトル空間が(滑らかな)複素構造を持つことを言う。1つの多様体に対して複数の概複素構造が入る場合がある。また、複素解析的多様体は必ず概複素構造をもつ一方で、概複素構造を持ちながら複素解析的多様体とならないものが存在する。概複素多様体はシンプレクティック幾何学に重要な応用を持つ。 この概念は、1940年代の(Charles Ehresmann)と(Heinz Hopf)による。.

グロモフ・ウィッテン不変量と概複素構造 · 安定写像と概複素構造 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

グロモフ・ウィッテン不変量と有理数 · 安定写像と有理数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

グロモフ・ウィッテン不変量と数学 · 安定写像と数学 · 続きを見る »

上記のリストは以下の質問に答えます

グロモフ・ウィッテン不変量と安定写像の間の比較

安定写像が32を有しているグロモフ・ウィッテン不変量は、42の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は10.81%です = 8 / (42 + 32)。

参考文献

この記事では、グロモフ・ウィッテン不変量と安定写像との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »