ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

クーロンの法則と電気

ショートカット: 違い類似点ジャカード類似性係数参考文献

クーロンの法則と電気の違い

クーロンの法則 vs. 電気

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。. 電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

クーロンの法則と電気間の類似点

クーロンの法則と電気は(ユニオンペディアに)共通で21ものを持っています: 力 (物理学)導体引力と斥力マクスウェルの方程式ライデン瓶ヘンリー・キャヴェンディッシュベンジャミン・フランクリンアンペアウィリアム・ギルバート (物理学者)オットー・フォン・ゲーリケシャルル・フランソワ・デュ・フェシャルル・ド・クーロンジェームズ・クラーク・マクスウェルスティーヴン・グレイ琥珀絶縁体荷電粒子電場電磁気学電荷放電

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

クーロンの法則と力 (物理学) · 力 (物理学)と電気 · 続きを見る »

導体

導体 (conductor).

クーロンの法則と導体 · 導体と電気 · 続きを見る »

引力と斥力

引力(いんりょく、attraction)または誘引力とは、2つの物体の間に働く相互作用のうち、引き合う(互いを近付けようとする)力のこと。一方、斥力(せきりょく、repulsion)または反発力とは、同様に2つの物体の間に働く相互作用であるが、反発し合う、すなわち互いを遠ざけようとする力のこと。 現在、物理学においては4つの基本的な力が考えられている。 そのうちのひとつ、電磁力(静電力と磁力)には引力と斥力の両方が存在する。電気と磁気にはそれぞれ2つの極性があり(電気では正と負、磁気でも正負と言うがN極とS極と言うこともある)、同じ極性同士には斥力が働き、異なる極性同士には引力が働く。 このように、引力と斥力の違いは単なる符号の違いといえる。 一方で、これもまた4つの力のうちのひとつである重力(万有引力)は、引力だけが確認されており、斥力としての重力は確認されていない。 また、特殊な場合として、パウリの排他律はある種の2つの物理的存在(フェルミオン)が同時にひとつの場所を占めることができない(正確にはひとつの状態を取り得ない)という法則であり、このためこの種の存在が非常に接近したとき非常に強力な斥力が発生するとみなすことができる。この場合は斥力だけであり、対応する引力は存在しない。.

クーロンの法則と引力と斥力 · 引力と斥力と電気 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

クーロンの法則とマクスウェルの方程式 · マクスウェルの方程式と電気 · 続きを見る »

ライデン瓶

ライデン瓶 ライデン瓶(ライデンびん)は、電気を蓄える装置。 静電気を貯める装置であり、1746年にオランダのピーテル・ファン・ミュッセンブルーク(ピーター・ヴァン・マッシェンブレーケ)によって発明されたとされるが、このような器具で静電気を溜めることができることは、その3ヶ月前に(Pomorze Tylne、Hinterpommern)出身の牧師エヴァルト・ゲオルク・フォン・クライスト(Ewald Georg von Kleist)が発見している。オランダのライデン大学で発明されたため、「ライデン瓶」の名がある。電気の実験用に広く使われ、ベンジャミン・フランクリンの凧揚げの実験にも使われた。 ガラス瓶の内側と外側を金属(鉛など)でコーティングしたもので、内側のコーティングは金属製の鎖を通して終端が金属球となっているロッドに接続される。通常、電極とプレートで構成され、これらが二つの電気伝導体となる。これらが誘電体(=絶縁体。例えばガラス)によって切り離され、そこに電圧をかけると電荷が貯まることになる。原理的にはコンデンサと同じである。 当初は、ガラス瓶の中に電気が溜まると考えられていたが、実際には、上に示したように絶縁された2つの導体の表面に溜まっているのであって、その間の空間には電気エネルギーが溜まっていることになる。 一般に、静電容量は現在の電子回路に使われているコンデンサと比較すると、それほど大きなものではない。しかし、高い電圧を加えることによって多量の電荷を蓄えることが可能で、使い方によっては感電を生じさせるほどの威力を持っている。 平賀源内が復元したことで知られるエレキテルにも、摩擦で生じた静電気を貯める機構としてライデン瓶が用いられている。 ライデン瓶は一度に数千ボルトの電圧を発生することができるが電流が小さいため強く感じることは無い。.

クーロンの法則とライデン瓶 · ライデン瓶と電気 · 続きを見る »

ヘンリー・キャヴェンディッシュ

ヘンリー・キャヴェンディッシュ(Henry Cavendish, 1731年10月10日 – 1810年2月24日)は、イギリスの化学者・物理学者である。貴族の家に生まれ育ち、ケンブリッジ大学で学んだ。寡黙で人間嫌いな性格であったことが知られている。遺産による豊富な資金を背景に研究に打ち込み、多くの成果を残した。 金属と強酸の反応によって水素が発生することを見出した。電気火花を使った水素と酸素の反応により水が生成することを発見し、水が化合物であることを示した。この結果をフロギストン説に基づいて解釈している。さらに水素と窒素の電気火花による反応で硝酸が得られ、空気中からこれらの方法で酸素と窒素を取り除くと、のちにアルゴンと呼ばれる物質が容器内に残ることを示した。 彼の死後には、生前に発表されたもののほかに、未公開の実験記録がたくさん見つかっている。その中には、ジョン・ドルトンやジャック・シャルルによっても研究された気体の蒸気圧や熱膨張に関するものや、クーロンの法則およびオームの法則といった電気に関するものが含まれる。これらの結果はのちに同様の実験をした化学者にも高く評価された。(ただしこれらは、未公開であったがゆえに、科学界への影響はほとんどなかった。「もし生前に公開されていたら」と、ひどく惜しまれた。) ハンフリー・デービーはキャヴェンディッシュの死に際し、彼をアイザック・ニュートンに比して評価した。19世紀には彼の遺稿や実験結果が出版され、彼の名を冠したキャヴェンディッシュ研究所が設立されている。.

クーロンの法則とヘンリー・キャヴェンディッシュ · ヘンリー・キャヴェンディッシュと電気 · 続きを見る »

ベンジャミン・フランクリン

ベンジャミン・フランクリン(Benjamin Franklin, グレゴリオ暦1706年1月17日<ユリウス暦1705年1月6日> - 1790年4月17日)は、アメリカ合衆国の政治家、外交官、著述家、物理学者、気象学者。印刷業で成功を収めた後、政界に進出しアメリカ独立に多大な貢献をした。また、凧を用いた実験で、雷が電気であることを明らかにしたことでも知られているただ、フランクリンが実際に凧の実験を行ったのかを疑問視する専門家もいる。なお、この実験を提案したのはフランクリンだが、初めて成功したのは1752年5月、フランスのトマ・ダリバード(:en:Thomas-François Dalibard)らである。ダリバードらはフランクリンの提案に従って、嵐の雲が通過するときに鉄の棒(避雷針)から火花を抽出した。フランクリンが凧を用いて同様の実験を行ったのは同年の6月、または6月から10月までの期間である。(アルベルト・マルチネス「科学神話の虚実」)。現在の米100ドル紙幣に肖像が描かれている他、ハーフダラー銀貨にも1963年まで彼の肖像が使われていた。 勤勉性、探究心の強さ、合理主義、社会活動への参加という18世紀における近代的人間像を象徴する人物。己を含めて権力の集中を嫌った人間性は、個人崇拝を敬遠するアメリカの国民性を超え、アメリカ合衆国建国の父の一人として讃えられる。『フランクリン自伝』はアメリカのロング・ベストセラーの一つである。.

クーロンの法則とベンジャミン・フランクリン · ベンジャミン・フランクリンと電気 · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

アンペアとクーロンの法則 · アンペアと電気 · 続きを見る »

ウィリアム・ギルバート (物理学者)

ウィリアム・ギルバート(William Gilbert またはWilliam Gylberde、1544年5月24日-1603年12月10日)は16世紀のイギリスの医師、物理学者、自然哲学者である。コペルニクスの地動説を早くから支持し、当時支配的だったアリストテレス哲学とそれに基づく学校教育を積極的に拒絶した。医師としての仕事のかたわら静電気、磁石の研究をおこなった。今日、主に著書 De Magnete (1600) で知られており、電気 (electricity) という言葉を作った1人とされている。また、versorium と名付けた回転する針のような検電器を発明しており、電気計測機器の祖とされている。 ギルバートの研究は、実験を用いた近代的な科学の先駆けとして、多くの科学者に多大な影響を及ぼし、電気工学や電気と磁気の父とされることもある。 なお、姓はギルバード (Gilberd) とされることもある。コルチェスターにある墓碑銘にはこちらの綴りで刻まれており、De Magnete の中の回想録的部分でもこの綴りが使われているし、コルチェスターには彼の名を冠した Gilberd School という学校もある。CGS単位系における、磁位・起磁力の単位ギルバートはウィリアム・ギルバートの名にちなんでいる。.

ウィリアム・ギルバート (物理学者)とクーロンの法則 · ウィリアム・ギルバート (物理学者)と電気 · 続きを見る »

オットー・フォン・ゲーリケ

ットー・フォン・ゲーリケ(Otto von Guericke、元の綴りはGericke。ユリウス暦1602年11月20日 - 1686年5月11日、グレゴリオ暦1602年11月30日 - 1686年5月21日)は、ドイツの科学者、発明家、政治家。特に真空の研究で知られている。.

オットー・フォン・ゲーリケとクーロンの法則 · オットー・フォン・ゲーリケと電気 · 続きを見る »

シャルル・フランソワ・デュ・フェ

ャルル・フランソワ・デュ・フェ(Charles François de Cisternay du Fay、1698年9月14日 – 1739年7月16日)はフランスの化学者である。パリ植物園の監督官を務めた。電気に2つの極性があることを提唱したことで知られる。 パリに軍人の家系に生まれた。1729年にロンドン王立協会のフェローに選出された。1732年にパリ植物園の監督官に任じられた。1733年に、封ろうもガラス棒も摩擦すれば帯電するが、これらが別の電気(électricité résineuse:樹脂電気とélectricité vitreuse:ガラス電気)であることを主張した。導体と絶縁体の違いについて述べ、同極に帯電した物体が反発し合い、異極に帯電した物体が引き合うことを発見した。たとえばスティーヴン・グレイのように物体の電気的性質がその色に関係するというような、帯電に関する誤解をといた。デュ・フェの観察結果は1733年12月に報告され、翌年の王立協会のフィロソフィカル・トランザクションズで刊行された。.

クーロンの法則とシャルル・フランソワ・デュ・フェ · シャルル・フランソワ・デュ・フェと電気 · 続きを見る »

シャルル・ド・クーロン

ャルル=オーギュスタン・ド・クーロン(Charles-Augustin de Coulomb、 1736年6月14日 - 1806年8月23日)はフランス・アングレーム出身の物理学者・土木技術者。彼が発明したねじり秤を用いて帯電した物体間に働く力を測定し、クーロンの法則を発見した。電荷の単位「クーロン」は彼の名にちなむ。.

クーロンの法則とシャルル・ド・クーロン · シャルル・ド・クーロンと電気 · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

クーロンの法則とジェームズ・クラーク・マクスウェル · ジェームズ・クラーク・マクスウェルと電気 · 続きを見る »

スティーヴン・グレイ

ティーヴン・グレイ(Stephen Gray、1666年 - 1736年2月15日)は、イギリスのアマチュア科学者。本業は染物屋であった。電気伝導の発見者として知られる。日本語表記は他にスチーヴン・グレイ、ステファン・グレーなどあり一定しない。.

クーロンの法則とスティーヴン・グレイ · スティーヴン・グレイと電気 · 続きを見る »

琥珀

琥珀のペンダント 琥珀(こはく)またはコハク(Amber、アンバー)は、天然樹脂の化石であり、宝石である。半化石の琥珀はコーパル(Copal)、加熱圧縮成形した再生コハクはアンブロイド(ambroid)という。 バルト海沿岸で多く産出するため、ヨーロッパでは古くから知られ、宝飾品として珍重されてきた。 鉱物に匹敵する硬度を持ち、色は黄色を帯びたあめ色のものが多い。.

クーロンの法則と琥珀 · 琥珀と電気 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

クーロンの法則と絶縁体 · 絶縁体と電気 · 続きを見る »

荷電粒子

荷電粒子(かでんりゅうし)とは、電荷を帯びた粒子のこと。通常は、イオン化した原子や、電荷を持った素粒子のことである。 核崩壊によって生じるアルファ線(ヘリウムの原子核)やベータ線(電子)は、荷電粒子から成る放射線である。質量の小さな粒子が電荷を帯びると、電場によって正と負の電荷が引き合ったり、反対に正と正、負と負が反発しあったりするクーロン力を受けたり、また磁場中でこういった粒子が運動することで進行方向とは直角方向に生じる力を受けたりする。これら2つの力をまとめてローレンツ力というが、磁場によって生じる力のほうが大きい場合には電界による力を無視して、磁場の力だけをローレンツ力と言うことがある。これはローレンツ力の定義式にある電界の項をゼロとおき(電界の影響が小さいため無視する)、磁場の影響だけを計算した結果で、近似である。詳しくはローレンツ力を参照。.

クーロンの法則と荷電粒子 · 荷電粒子と電気 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

クーロンの法則と電場 · 電場と電気 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

クーロンの法則と電磁気学 · 電気と電磁気学 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

クーロンの法則と電荷 · 電気と電荷 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

クーロンの法則と放電 · 放電と電気 · 続きを見る »

上記のリストは以下の質問に答えます

クーロンの法則と電気の間の比較

電気が292を有しているクーロンの法則は、43の関係を有しています。 彼らは一般的な21で持っているように、ジャカード指数は6.27%です = 21 / (43 + 292)。

参考文献

この記事では、クーロンの法則と電気との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »