Google PlayストアでUnionpediaアプリを復元するために作業中です
出ていきます入ってきます
🌟ナビゲーションを改善するためにデザインを簡素化しました!
Instagram Facebook X LinkedIn

キセノン

索引 キセノン

キセノン(xenon、Xenon )は原子番号54の元素。元素記号はXe。貴ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に貴ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の貴ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。

目次

  1. 82 関係: 原子力発電原子番号原子核反応断面積反磁性中性子捕獲中性子毒三酸化キセノン人工元素二フッ化キセノン二重ベータ崩壊二重電子捕獲ヨウ素ヨウ素131ラドンヘキサフルオロ白金酸キセノンブリティッシュコロンビア大学フッ化物フッ素ニッケルベンゼンベータ崩壊アルゴンイオン (化学)イオンエンジンウランウィリアム・ラムゼーオックスフォード英語辞典カナダキセノン133キセノン135キセノンの同位体キセノンランプキセノンオーバーライドクリプトンジュール=トムソン効果ジクロロメタンセシウムセシウムの同位体全身麻酔六フッ化キセノン元素元素記号光電子増倍管固体四フッ化キセノン四フッ化酸化キセノン石英第18族元素... インデックスを展開 (32 もっと) »

  2. 全身麻酔薬
  3. 解離性麻酔薬
  4. 貴ガス

原子力発電

浜岡原子力発電所 泊発電所 島根原子力発電所 チェルノブイリ原子力発電所 原子力発電(げんしりょくはつでん)とは、原子力を利用した発電のことである。現代の多くの原子力発電は、熱エネルギーで高圧の水蒸気を作り、蒸気タービンおよびこれと同軸接続された発電機を回転させて発電する。ここでは主に軍事用以外の商業用の原子力発電の全般について説明する。

見る キセノンと原子力発電

原子番号

原子番号(げんしばんごう、)とは、核種を区別する量の一つでB.ポッフ ''et al.'', pp.13-14、原子核の中にある陽子の個数である。電荷を帯びていない中性原子においては、原子中の電子の数に等しい。通常は記号 で表されるが、これは「数」や「番号」を表す の頭文字から来ている。現在、元素の正式名称が決定している最大の原子番号はオガネソンの118である。 原子番号は元素の種類と対応しており、元素記号から原子番号が一意に決まるため、通常書くことはないが、明示する場合は元素記号の左に下付き添え字で書く。例えば、炭素の場合は で表す。

見る キセノンと原子番号

原子核

は、単にともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。

見る キセノンと原子核

反応断面積

原子核物理学における反応断面積(はんのうだんめんせき、reaction cross-section)または単に断面積とは、核反応を起こす割合を表す尺度を言う。 吸収に対する吸収断面積、散乱に対する散乱断面積とそれぞれの核反応に対してその断面積が定義される。

見る キセノンと反応断面積

反磁性

反磁性(はんじせい、diamagnetism)とは、外部磁場をかけたとき(磁石を近づけるなど)、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである。磁場をかけた場合にのみこの性質が現れ、反磁性体は自発磁化を示さない。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 その微視的機構は、原子中の電子へ外部磁場を与えると、電子に外部磁場を打ち消す回転運動が励起され、逆向きの磁化が生じることによる。したがって反磁性は全ての物質が持つ性質である。

見る キセノンと反磁性

中性子捕獲

原子核物理学における中性子捕獲(ちゅうせいしほかく、neutron capture)とは、核反応の一種で、中性子が原子核に吸収されたのちにガンマ線を放出する現象〔(n, γ)反応〕を言う。

見る キセノンと中性子捕獲

中性子毒

中性子毒(ちゅうせいしどく、)または毒物質、毒物、ポイズン、妨害物質とは、中性子の反応断面積が大きい物質のことである。反応断面積が大きいため中性子をよく吸収し、よくも悪くも原子炉内での核分裂反応を低下させる。中性子毒により原子炉の核反応が制御される。キセノン135などの核分裂生成物は原子炉停止直後に増加するため再起動を困難にする。またホウ素10のように核反応を低下させるなどの目的のため外部から持ち込まれる物質も毒物質という。 原子炉内部で核分裂反応を持続的に引き起こすには中性子の量を一定に保つことが重要であり、このような性質を持った中性子毒は核反応にとって重要な影響を及ぼす物質となっている。

見る キセノンと中性子毒

三酸化キセノン

三酸化キセノン(さんさんかキセノン、Xenon trioxide)は、化学式が XeO3 と表されるキセノンの酸化物。キセノンの酸化数は +6 で、非常に強力な酸化剤で、水と反応するとゆっくり分解して酸素とキセノンを放出する。この反応は太陽光への曝露によって速められる。有機物と接触すると爆発する。 六フッ化キセノン (XeF6) やオキシ四フッ化キセノン (XeOF4) の加水分解によって発生する。Smith によって 1963年に化合物の外見やX線構造などの報告がなされている。XeO3 を得るための加水分解には水のほか、ジフルオロリン酸 (F2P(O)OH) も用いられるForopoulos, J., Jr.; DesMarteau, D.

見る キセノンと三酸化キセノン

年(ねん、とし、year)は、時間の単位の一つであり、春・夏・秋・冬、あるいは雨季・乾季という季節のめぐりが1年である。元来は春分点を基準に太陽が天球を一巡する周期であり、平均して約365.242 189日(2015年時点)である(太陽年)。 1年の長さを暦によって定義する方法が暦法であり、現在世界各国で用いられるグレゴリオ暦佐藤 (2009)、pp.77-81、世界統一暦の試み(現行暦)では、1年を365日とするが、1年を366日とする閏年を400年間に97回設けることによって、1年の平均日数を365.2425日とする。 なお、天文学における時間の計量の単位としての「年」には通常、ユリウス年を用いる。ユリウス年は正確に31 557 600秒=365.25 d(d。

見る キセノンと年

人工元素

人工元素(じんこうげんそ)は、人工的に合成された元素(同位体)の総称である。人工放射性元素とも呼ばれる。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素はほぼすべて人工元素である。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。

見る キセノンと人工元素

二フッ化キセノン

二フッ化キセノン(にフッかキセノン、Xenon difluoride、XeF2)は、キセノン化合物でもっとも安定なものの1つであり、強力なフッ化剤である。大部分の共有結合性無機フッ化物のように水分に敏感である。高密度の白色結晶で、光や水に接すると分解する。不快臭を持つが、蒸気圧は低い (Weeks, 1966)。分子構造は直線形である。 550 cm-1 と 556 cm-1 に特徴的な赤外線吸収のダブレットを示す。市販品が入手可能。

見る キセノンと二フッ化キセノン

二重ベータ崩壊

二重ベータ崩壊(にじゅうベータほうかい、double beta decay)は、原子核内の2つの中性子がほぼ同時に陽子になるという、(広義の)ベータ崩壊の一種である。

見る キセノンと二重ベータ崩壊

二重電子捕獲

二重電子捕獲(にじゅうでんしほかく、Double electron capture)は原子核の崩壊モードの一種。核子の数が 、原子番号が である核種 において、二重電子捕獲は、の核種の方が質量が小さい場合に限って可能である。 この崩壊過程では、原子核内の2個の陽子によって、軌道上にある2個の電子が捕獲され、中性子を生じる。また、2個のニュートリノが放出される。陽子が中性子に変化するので、中性子数は2大きくなり、陽子数は2小さくなる。そして、質量数 は変化しない。原子番号が変わるので、娘核種は親核種とは異なる元素に変化する。 例えば、 この核反応ではクリプトン78が2個の電子を捕獲し、セレン78と2個のニュートリノに変化している。

見る キセノンと二重電子捕獲

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性(酸化力)はフッ素、塩素、臭素より小さい。水にはあまり溶けないが、エタノールやヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、日本の毒物及び劇物取締法により医薬用外劇物に指定されている。

見る キセノンとヨウ素

ヨウ素131

ヨウ素131(iodine-131, )は、ヨウ素の放射性同位体のうちの一つで、質量数が131のものを指す。半減期は約8日である。主に医療や製薬の用途がある。また、核分裂生成物のうち放射能汚染の原因となる主要三核種のひとつである。

見る キセノンとヨウ素131

ラドン

ラドン(radon 、Radon )は、原子番号86の元素。元素記号は Rn。

見る キセノンとラドン

ヘキサフルオロ白金酸キセノン

ヘキサフルオロ白金酸キセノン(ヘキサフルオロはっきんさんキセノン、xenon hexafluoroplatinate)は世界で初めて作られた貴ガス化合物である。分子式はXePtF6である。 六フッ化白金とキセノンの反応によって生成する。この実験は1962年5月にカナダのブリティッシュコロンビア大学のによって行われた。バートレットは生成物がXe+−であると述べたが、後の研究ではバートレットの生成物がおそらく塩混合物であり、実際はXe+−を含んでいなかったことが示唆されている。

見る キセノンとヘキサフルオロ白金酸キセノン

ブリティッシュコロンビア大学

ブリティッシュコロンビア大学(ブリティッシュコロンビアだいがく、、略称:UBC)は、カナダ・ブリティッシュコロンビア州が設置した公立大学。バンクーバー市西端、オカナガン地方のケロウナに所在する研究総合大学。1908年創立。カナダ屈指の名門大学。

見る キセノンとブリティッシュコロンビア大学

フッ化物

フッ化物(フッかぶつ、弗化物、fluoride)とはフッ素とほかの元素あるいは原子団とから構成される化合物である。フッ素は最大の電気陰性度を持つ元素であるため、HF3 などごく一部の例外を除き、化合物の中では酸化数が -1 とされる。イオン性あるいは分子性のフッ化物が知られているが分子性フッ化物は液体のものが多く、常温で気体や固体のものも少数見られる。イオン性のフッ化物でも一般に融点の低いものが多い長倉三郎ら(編)、「フッ化物」、『岩波理化学辞典』、第5版 CD-ROM版、岩波書店、1998年。。 イオン性のフッ化物の構成要素となる、フッ素原子が電子を1個得て単独でイオン化した陰イオン (F-) はフッ化物イオンと呼ばれる。フッ素イオンと言う名称は、現在推奨されていない。

見る キセノンとフッ化物

フッ素

原子の手を含めたフッ素原子の3次元図 隣り合ったフッ素原子の距離を示した2次元図で、距離は143ピコメートルである フッ素(フッそ、弗素、fluorine、fluorum、Fluor)は、原子番号9の元素である。元素記号はF。原子量は18.9984。ハロゲンのひとつ。 また、同元素の単体であるフッ素分子(F2、二弗素)も、一般的にフッ素と呼ばれる。

見る キセノンとフッ素

ニッケル

ニッケル(nikkel, nickel, niccolum, 鎳)は、原子番号28の金属元素である。元素記号はNi。

見る キセノンとニッケル

ベンゼン

ベンゼン(benzene)は、分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の1つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine、主として炭素数5 - 10の飽和炭化水素からなる混合物)とはまったく別の物質であるが、英語では異綴の同音異義語である。

見る キセノンとベンゼン

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、原子核の放射性崩壊の一種で、放射線としてベータ線(電子)と反電子ニュートリノとを放出する。ベータ壊変(ベータかいへん)ともいう。 「中性子 ⇄ 陽子+電子+反電子ニュートリノ」の遷移過程の右方向への遷移である。逆方向への遷移は電子捕獲(逆ベータ崩壊)と呼ばれる。

見る キセノンとベータ崩壊

アルゴン

アルゴン(argon)は原子番号18番の元素である。元素記号は Ar。原子量は39.95。第18族元素(貴ガス)、第3周期元素の一つ。

見る キセノンとアルゴン

イオン (化学)

イオン(Ion、ion、離子)とは、電子の過剰あるいは欠損により電荷を帯びた原子または基のことである。 電離層などのプラズマ、電解質の水溶液やイオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語の (イオン、ion、の意)より、ion(移動)の名が付けられた。

見る キセノンとイオン (化学)

イオンエンジン

ジェット推進研究所 (JPL) のキセノンイオンエンジン イオンエンジン (Ion engine) は、電気推進とよばれる方式を採用したロケットエンジンの一種で、マイクロ波を使って生成したプラズマ状イオンを静電場で加速・噴射することで推力を得る。イオン推進、イオンロケット、イオンスラスタなどともいう。最大推力は小さいが、比較的少ない燃料で長時間動作させられる特徴をもち、打ち上げられたあとの人工衛星や宇宙探査機の軌道制御に用いられることが多い。 以前は実証試験として搭載される例が多かったが、近年では、従来のヒドラジン系推進機に代わる標準装備となりつつある。比推力が化学ロケットよりも格段に高いため、静止衛星の長寿命化に貢献している。

見る キセノンとイオンエンジン

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号はU。ウラニウムともいう。アクチノイドに属する。

見る キセノンとウラン

ウィリアム・ラムゼー

バニティ・フェア』誌に掲載されたラムゼーの漫画風イラスト ウィリアム・ラムゼー(William Ramsay, 1852年10月2日 – 1916年7月23日)は、スコットランド出身の化学者である。1904年に空気中の貴ガスの発見によりノーベル化学賞を受賞した。なお、同年のノーベル物理学賞は希ガスであるアルゴンを発見した功績によりジョン・ウィリアム・ストラット(レイリー卿)が受賞している。

見る キセノンとウィリアム・ラムゼー

オックスフォード英語辞典

『オックスフォード英語辞典』(オックスフォードえいごじてん、Oxford English Dictionary) は、オックスフォード大学出版局が刊行する記述的英語辞典である。略称はOED。『オックスフォード英語大辞典』とも呼ばれる。世界中の多様な英語の用法を記述するだけでなく、英語の歴史的発展をも辿っており、学者や学術研究者に対して包括的な情報源を提供している。

見る キセノンとオックスフォード英語辞典

カナダ

カナダ(英・、英語発音: 、フランス語発音: )は、北アメリカ大陸北部に位置する連邦立憲君主制国家。イギリス連邦加盟国で、英連邦王国の一つである。10の州と3の準州からなり、首都はオタワ 日本国外務省(2022年11月29日閲覧)。 国土面積は約998.5万平方キロメートルで、ロシア連邦に次いで世界で2番目に広い。 国土の南側はカナダ=アメリカ合衆国国境が走り、北西部でもアメリカ合衆国アラスカ州と国境を接する。西は太平洋、東は大西洋に面する。北辺は北極圏で、北東にデンマーク領グリーンランドがあるほか、北極海と挟んでロシア連邦と向かい合っている。

見る キセノンとカナダ

キセノン133

キセノン133 (Xenon-133・133Xe) とは、キセノンの同位体の1つ。

見る キセノンとキセノン133

キセノン135

キセノン135(Xenon-135、135Xe)は、半減期が約9.2時間の不安定なキセノンの同位体であり、ウランの核分裂生成物の1つである。キセノン135は、既知の最も強力な中性子捕獲物質(200万バーン)、核毒物であり、原子炉の運転に大きな影響を与える。

見る キセノンとキセノン135

キセノンの同位体

天然のキセノン(Xe)は9種の安定同位体からなる(124Xe、126Xe、134Xe、136Xeは二重ベータ崩壊を受けることが予測されるが、これまで観測されたことはないため安定同位体と見なされる)。全元素中においてキセノンは、安定同位体が10種のスズに次いで2番目に多くの安定同位体を持つ。 キセノンは40種以上の放射性同位体が知られている。129Xeは129Iのβ崩壊によって生成する。また、131mXeと133Xe、133mXeそして135Xeは235Uと239Puの核分裂反応によって生成するため、核爆発の指標に使われる。 人工的同位体である135Xeは原子炉の稼働において非常に重要である。

見る キセノンとキセノンの同位体

キセノンランプ

キセノンランプまたはクセノンランプ(英語:xenon lamp)は高輝度放電灯の一種で、高圧のキセノンガス中での放電による発光を利用したランプ。 広義には、放電による紫外線で蛍光体を励起させて発光する希ガス蛍光ランプ(蛍光ランプの一種)もキセノンランプに含めることがある。また、点灯時のみキセノンの放電による熱を利用するメタルハライドランプの一種(自動車の放電式ヘッドランプに使われる)もキセノンランプと呼ぶことがある。また、キセノンランプのことをキセノン電球ということがあるが、これはキセノン電球はキセノンを封入した白熱電球を意味することもありこれらについてはこの記事では扱わない(それらについては当該記事を参照されたい)。

見る キセノンとキセノンランプ

キセノンオーバーライド

キセノンオーバーライド とは、原子炉においてキセノン135の蓄積(または消滅)により一時的な更なる出力低下(または増加)を招く現象である。

見る キセノンとキセノンオーバーライド

クリプトン

クリプトン(krypton)は原子番号36の元素。元素記号は Kr。貴ガス元素の一つ。

見る キセノンとクリプトン

ジュール=トムソン効果

ジュール=トムソン効果(ジュール=トムソンこうか、『学術用語集 物理学編』)とは、気体を多孔質壁を通して両側の圧力を一定に保ちながら膨張させた時に温度が変化することである。1852年に観測された現象に対して、ジェームズ・プレスコット・ジュールとウィリアム・トムソン(ケルビン卿)によって1861年に提唱された。この現象は気体の液化などに今日も応用されている。1908年にヘイケ・カメルリング・オネスはこの効果を利用して、ヘリウムの液化できる温度0.9 K (。

見る キセノンとジュール=トムソン効果

ジクロロメタン

ジクロロメタン(dichloromethane)は、分子式を CH2Cl2 と表される、有機溶媒の一種。慣用名は塩化メチレンといい、産業界ではこちらの名称を使うことも多い。DCM 、MDCなどと略される場合がある。

見る キセノンとジクロロメタン

セシウム

セシウム (caesium, cesium) は、原子番号55の元素。元素記号は、「灰青色の」を意味するラテン語の caesius カエシウスより Cs。軟らかく黄色がかった銀色をしたアルカリ金属である。融点は28.44 で、常温付近で液体状態をとる5種類の金属元素のうちの一つである。 セシウムの化学的・物理的性質は同じくアルカリ金属のルビジウムやカリウムと似ていて、水と−116 で反応するほど反応性に富み、自然発火する。安定同位体を持つ元素の中で、最小の電気陰性度を持つ。セシウムの安定同位体はセシウム133のみである。セシウム資源となる代表的な鉱物はポルックス石である。 セシウムは、ウランの代表的な核分裂生成物である。

見る キセノンとセシウム

セシウムの同位体

セシウム (Cs) は、少なくとも41種類の同位体を持つ。原子量は112から152に分布する。

見る キセノンとセシウムの同位体

全身麻酔

全身麻酔(ぜんしんますい、General anesthesia)は、痛覚刺激を与えても患者が覚醒しないように、人為的に誘発される意識喪失である。この効果は、静脈内または吸入の全身麻酔薬を投与することで得られ、しばしば鎮痛剤および神経筋遮断薬が併用される。手術中は自発呼吸が十分でないことが多く、気道を保護するための介入が必要となることが多い。全身麻酔は一般に手術室では患者にとって耐え難い痛みを伴う外科手術を可能にするために、集中治療室や救急外来では重症患者の気管挿管や機械換気を容易にするために実施される。 日本では、全身麻酔の目標は「麻酔の3要素」、すなわち鎮静・鎮痛・筋弛緩とされることが多い。有害反射の抑制も加えて麻酔の4要素とされることもあるが、これは元はWoodbridgeらが1957年に提唱した麻酔深度の概念に遡ることができる。英語圏では、、健忘、鎮痛、自律神経系の反射消失、場合によっては骨格筋の麻痺を達成することが全体目標とされることもある。すなわち、4要素ないしは5要素となっており、鎮静において意識消失と健忘が別個の評価項目となっていることによる。

見る キセノンと全身麻酔

六フッ化キセノン

六フッ化キセノン(ろくフッかキセノン、xenon hexafluoride)は、化学式が XeF6 と表されるキセノンの六フッ化物で、無色の結晶である。この化合物は、3種類あるキセノンのフッ化物のうちの1つである。(他2つは二フッ化キセノンと四フッ化キセノン)これらは全て標準温度で安定で、六フッ化キセノンはこれらの中で最も強力なフッ素化剤である。水に対して非常に敏感なため、痕跡量の水でさえ取り除かなければならない。 約300℃、6 MPa の下で二フッ化キセノンを加熱し続けることで得られる。

見る キセノンと六フッ化キセノン

元素

現代の化学での元素の説明。19世紀後半にその原型が提唱された周期表は、元素の種類と基本的な特徴や関係をその周期的な配列の中で説明する表である。 元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。

見る キセノンと元素

元素記号

現在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう、element symbol) とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。1、2、ないし3文字のアルファベットが用いられるとされているが、現在使われている元素記号はすべて1文字または2文字からなる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。

見る キセノンと元素記号

光電子増倍管

光電子増倍管(こうでんしぞうばいかん、photomultiplier tube、PMT)は、光電効果により放出された電子を増幅することにより、高い感度を実現する光センサである。フォトマルまたはPMTと略称されることもある。 光子1個まで検出可能(フォトンカウンティング)な超高感度、高速動作、低ノイズ、広い受光面積などを特長とし、分光分析、高エネルギー物理学、天文学、製版用ドラムスキャナ、医療診断(ガンマカメラ、PET等)、血液分析、石油探査、環境測定、バイオテクノロジー、半導体製造、材料開発その他の用途に広く使用されている。 なお、光電子を増幅する機能が無いものは光電管と言う。

見る キセノンと光電子増倍管

固体

固体インスリンの単結晶形態 は、物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。

見る キセノンと固体

四フッ化キセノン

四フッ化キセノン(しフッかキセノン、Xenon tetrafluoride)は、分子式がXeF4と表されるキセノンのフッ化物である。二種類の元素からのみ成る貴ガス化合物の中では最初に発見された化合物であり、1molのXeと2molのF2により生成する。この反応は251kJ/molの発熱反応である。 この物質の構造は、1963年に核磁気共鳴分光法とX線結晶構造解析により平面四角形であると報告されている。キセノンが2対の孤立電子対をもっているため、この構造はVSEPR理論により説明される。 四フッ化キセノンは、無色の結晶として発生する。115.7℃で昇華する。 キセノンのフッ化物は標準温度で全て熱力学的に安定であるが、空気中の水分とさえ反応するので、乾燥状態で保存しなければならない。

見る キセノンと四フッ化キセノン

四フッ化酸化キセノン

四フッ化酸化キセノン(しフッかさんかキセノン、xenon tetrafluoride oxide)は、化学式が XeOF4 で表される無機化合物である。他の全てのキセノン化合物と同様に反応性が大きく不安定である。この化合物の構造はVSEPR則によって四角錐形構造と予測される。

見る キセノンと四フッ化酸化キセノン

石英

水晶砂 石英(せきえい、、、クォーツ、クオーツ)は、二酸化ケイ素 (SiO) が結晶してできた鉱物。六角柱状のきれいな自形結晶をなすことが多い。中でも特に無色透明なものを水晶(すいしょう、独: 、英: 、ロッククリスタル)と呼び、古くはと呼ばれて珍重された。(仮に不透明であっても、六角柱状の自形結晶の形をしていれば水晶と呼ばれる) 石英を成分とする砂は珪砂(けいしゃ・けいさ、独: 、英: )と呼ばれ、石英を主体とした珪化物からなる鉱石は珪石と呼ぶ。この珪石のうち、チャートや珪質砂岩が熱による変成(接触変成作用)を受けた変成岩を珪岩(クォーツァイト)と呼ぶが、この珪岩の中にフクサイト(クロム白雲母)の微細な粒子を含み鮮やかな緑色を呈色し、砂金のようなキラキラした輝きを発するものは特に砂金石(アベンチュリン)と呼ばれている。

見る キセノンと石英

第18族元素

第18族元素(だいじゅうはちぞくげんそ)とは、元素周期表における第18族に属する元素、すなわちヘリウム・ネオン・アルゴン・クリプトン・キセノン・ラドンを指す族名である。なお、これらのうちで安定した核種を持つのは、第1周期元素のヘリウムから第5周期元素のキセノンまでであり、ラドンとオガネソンは放射性元素である。貴ガス(きガス、noble gas)と呼ばれる。英語表記の変更があった2005年までは希ガス・稀ガス(きガス、rare gas)と呼ばれていた。

見る キセノンと第18族元素

紫外線

UVインデックス(紫外線指数) 紫外線(しがいせん、ultraviolet)は、波長が10 - 400 nm nm はナノメートルで、10-9 m に相当する。、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。可視光線の紫色の外側という意味で紫外線という。1960年代(昭和35年)以前の呼び名は菫外線(きんがいせん)とも。また、英語の からと省略される。

見る キセノンと紫外線

芳香族化合物

芳香族化合物(ほうこうぞくかごうぶつ、aromatic compounds)は、ベンゼンを代表とする環状不飽和有機化合物の一群。炭化水素のみで構成されたものを芳香族炭化水素 (aromatic hydrocarbon)、環構造に炭素以外の元素を含むものを複素芳香族化合物 (heteroaromatic compound) と呼ぶ。狭義には芳香族化合物は芳香族炭化水素と同義である。 19世紀ごろ知られていた芳香をもつ化合物の共通構造であったことから「芳香族」とよばれるようになった。したがって匂い(芳香)は芳香族の特性ではない。 芳香族類は、芳香族(aromatic)、反芳香族(antiaromatic)、非芳香族(nonaromatic)に分類される。芳香族の反対に当たるものが反芳香族、芳香族、反芳香族のいずれにも当たらないものが非芳香族と呼ばれる。

見る キセノンと芳香族化合物

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。

見る キセノンと融点

面心立方格子構造

面心立方格子構造(めんしんりっぽうこうしこうぞう、face-centered cubic, fcc)は、ブラベー格子の一種。単位格子の各頂点および各面の中心に原子が位置する。立方最密充填構造(りっぽうさいみつじゅうてんこうぞう、cubic close-packed, ccp)とも呼ばれる。面心立方格子構造を持つ単体金属は多い。

見る キセノンと面心立方格子構造

術後嘔気嘔吐

術後嘔気嘔吐(じゅつごおうきおうと、Postoperative nausea and vomitingː PONV、ピーオーエヌブイ))は、 (PACU) の患者または手術後24時間以内に患者が経験する吐き気、嘔吐、またはむかつきの現象である。 PONVは、毎年全身麻酔を受ける人口の約10%が罹患するとされる。PONVは不快で、手術後の離床や食事、水分、薬の摂取が遅れる可能性がある。

見る キセノンと術後嘔気嘔吐

複層ガラス

'''典型的な複層ガラスの断面図'''中間層 (Air Space)ガラス板 (Glass Lite)シリコーンによる密閉 (Silicone Seal)乾燥剤 (Desiccant)スペーサー (Spacer)ブチルゴムによる密閉 (Butyl Seal) 複層ガラス(ふくそうガラス)は、複数枚の板ガラスを重ね、その間に乾燥空気やアルゴンガス等が封入された(または真空状態にした)中間層を設ける形で1ユニットを構成するガラスを指す。中間層は密閉されているため、基本的に中間層の厚さが増すほど断熱性能が高まるが、封入された気体に対流が発生する程厚くなると断熱性能が頭打ちになる。ただし、中間層にガラスを追加することでこの問題は解消できる。

見る キセノンと複層ガラス

語源学

語源学(ごげんがく、etymologia、etymology)とは、ある語について、何に由来するのか、あるいはいつ借用されたのか、意味や形がどのように変化したのかを探る学問である。言語学の中では主要な分野ではなく、また一つ一つの語の由来を探ることは学問的に重視されていないが、その成果は言語の系統を調べる比較言語学で利用される。

見る キセノンと語源学

講談社

株式会社講談社(こうだんしゃ、)は、東京都文京区音羽に本社を置く日本の大手総合出版社。系列企業グループ「音羽グループ」の中核企業。 「週刊少年マガジン」「モーニング」「週刊現代」「FRIDAY」「ViVi」「群像」など30を超える雑誌のほか、文芸書からコミック、実用書や学術書まで多様な書籍を発行している。 小学館・集英社(両社とも一ツ橋グループに所属)と並ぶ日本国内の出版業界最大手であり、一時は年間売上高が2000億円を超えていたこともあった。しかし、近年はいわゆる「出版不況」により売上が減少、2002年(平成14年)には戦後初の赤字決算となった。近年は紙の出版物への依存体質の改善に注力し、2015年(平成27年)以降は電子書籍などのデジタル関係、および国際や権利関係の収入が急増したことにより増収増益が続いている。

見る キセノンと講談社

貴ガス化合物

貴ガス化合物(きガスかごうぶつ、noble gas compound)とは、周期表の最も右に位置する第18族元素、すなわち貴ガス元素を含む化合物の総称。

見る キセノンと貴ガス化合物

麻酔

麻酔(ますい)とは、ヒトまたは動物を対象として誘発される、感覚または意識の制御された一時的な喪失の状態を指す。 麻酔には、鎮痛(痛みの緩和または防止)、不動化(筋肉の弛緩)、健忘(記憶の喪失)、および、これら4つの要素の一部または全部が含まれる。麻酔薬の作用下にある個体は、「麻酔がかかっている」と呼ばれる。 麻酔をかけないと耐えられないような強い痛みを伴う処置や、技術的に不可能な処置も、麻酔をかければ痛みを感じさせずに行うことができる。麻酔は、意識消失の深さにより、3つの種類に分類される。

見る キセノンと麻酔

長さの比較

長さの比較(ながさのひかく)では、長さの比較ができるよう、長さを昇順に表にする。

見る キセノンと長さの比較

酸化物

酸化物(さんかぶつ、oxide)は、酸素とそれより電気陰性度が小さい元素からなる化合物である。酸化物中の酸素原子の酸化数は−2である。酸素は、ほとんどすべての元素と酸化物を生成する。貴ガスについては、ヘリウム (He)、ネオン (Ne) そしてアルゴン (Ar) の酸化物はいまだ知られていないが、キセノン (Xe) の酸化物(三酸化キセノン)は知られている。一部の金属の酸化物やケイ素の酸化物(ケイ酸塩)などはセラミックスとも呼ばれる。

見る キセノンと酸化物

酸素

酸素(さんそ、oxygen、oxygenium、oxygène、Sauerstoff)は、原子番号8の元素である。元素記号はO。原子量は16.00。第16族元素、第2周期元素のひとつ。

見る キセノンと酸素

酸性酸化物

酸性酸化物(さんせいさんかぶつ)とは、水と反応して酸を生じるか、塩基と反応して塩を生じる非金属元素または酸化数の大きな金属元素の酸化物である。しばしば酸無水物と混同される。 酸性酸化物には以下のものがある。

見る キセノンと酸性酸化物

電子

電子(でんし、、記号: または )は、電気素量に等しい大きさの負電荷を持つ亜原子粒子である。電子はレプトン粒子族の第一世代に属し 、知られている限り構成要素や内部構造を持たないことから、一般に素粒子であると考えられている。電子の質量は陽子のおよそである。電子の量子力学的な性質には、換算プランク定数 の半整数倍の値の固有角運動量(スピン)を持つことがある。電子はフェルミ粒子であり、2つの電子が同じ量子状態を占めることはパウリの排他原理によって禁じられる。すべての素粒子と同様に、電子は粒子と波の両方の性質を示す。すなわち、電子は他の粒子と衝突することも、光のように回折することもできる。電子の波動性は、中性子や陽子などの他の粒子よりも実験的に観測しやすい。それは、電子は質量が小さいので、同じエネルギーにおけるド・ブロイ波長が長いためである。

見る キセノンと電子

電子ボルト

電子ボルト(でんしボルト、electron volt、記号: eV)はエネルギーの単位のひとつである。非SI単位であるがSI併用単位となっている。ただし、計量法における法定計量単位ではない。 は、電気素量(電子1個の電荷の絶対値)をもつ荷電粒子が、真空中で の電位差を抵抗なしに通過するときに得るエネルギーである。2019年のSI基本単位の再定義により、 の値は正確に である。

見る キセノンと電子ボルト

電子捕獲

電子捕獲(でんしほかく、electron capture、略称:EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK殻の電子であるが、L殻やM殻の電子が捕獲される場合もある。

見る キセノンと電子捕獲

Ppm

ppm(パーツ・パー・ミリオン)や百万分率(ひゃくまんぶんりつ)は、100万分のいくらであるかという割合を示すparts-per表記による単位。「parts per million」の頭文字をとったもので、100万分の1の意。1ppm。

見る キセノンとPpm

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter、ダークマター)は天文学的現象を説明するために考えだされた仮説上の物質。 “質量を持つ”、“物質とはほとんど相互作用せず、光学的に直接観測できない”、“銀河系内に遍く存在する”といった性質が想定される。間接的に存在を示唆する観測事実はあるものの、直接的な観測例は無く、ダークマターの正体も不明である。

見る キセノンと暗黒物質

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、原子核が分裂して同程度の大きさの原子核に分かれること。核分裂または原子核分裂ともいう。1938年に、オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を発見した。この結果をリーゼ・マイトナーとオットー・ロベルト・フリッシュらがウランの核分裂反応であると解釈し、fission(核分裂)の語を当てた。

見る キセノンと核分裂反応

とは、化学式 H2O で表される、水素と酸素の化合物である『広辞苑』第五版 p.2551「水」。日本語においては特に湯と対比して用いられ、液体ではあるが温度が低く、かつ凝固して氷にはなっていない物を言う。また、液状の物全般を指すエンジンの「冷却水」など水以外の物質が多く含まれた混合物も水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、水に関する文化的な事項を主として解説する。水の化学的・物理学的な事項は「水の性質」を参照。

見る キセノンと水

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも言う。

見る キセノンと気体

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における定数として導入される物理定数であるアトキンス『物理化学』 p. 20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 理想気体の多寡を物質量で表す場合は、気体定数は気体の種類に依らない普遍定数であり、特に普遍気体定数()やモル気体定数()と呼び分けられる。理学系、特に物理学において気体定数と呼ぶ場合は、基本的にモル気体定数を指している。これに対して、理想気体の多寡を質量で表す場合は、比気体定数()と呼ばれる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。

見る キセノンと気体定数

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p. 122.。沸騰点または沸騰温度()ともいう。沸騰している液体の温度は、沸点にほぼ等しい。 純物質の沸点は、一定の外圧のもとでは、その物質に固有の値となる。例えば外圧が 1.00 気圧 のときの水の沸点は 100.0 ℃ であり、酸素の沸点は −183.0 ℃ である特記ない限り本文中の沸点は次のサイトに依る:。外圧が変われば同じ液体でも沸点は変わる。一般に、外圧が高くなると沸点は上がり、低くなると沸点は下がる。例えば外圧が 2.00 気圧になると水の沸点は 120.6 ℃ まで上昇し、外圧が 0.64 気圧になると 87.9 ℃ まで降下する。

見る キセノンと沸点

液体窒素

液体窒素(えきたいちっそ、liquid nitrogen)は、冷却された窒素の液体である。液化窒素とも呼ばれ液化空気の分留により工業的に大量に製造される。純粋な窒素が液相状態になったものである(液体の密度は三重点で0.807 g/mL)。

見る キセノンと液体窒素

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。

見る キセノンと液体酸素

断熱過程

断熱過程(だんねつかてい、adiabatic process)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。

見る キセノンと断熱過程

断熱材

断熱材(だんねつざい)とは、物理・化学的物性により熱移動・熱伝達(どちらも)を減少させるものの総称。熱絶縁材とも呼ぶ。建築用のものは断熱材、工業用のものは保温材と呼称されることが多い。また、断熱材の材料を断熱材料、成形製品を断熱材と呼び分けるが現実には混用が多い。ここでは主に建築材としての断熱材について述べる。

見る キセノンと断熱材

1 E4 s

104 - 105 s(2.78 時間 - 27.8 時間)の時間のリスト。

見る キセノンと1 E4 s

1 E5 s

105 - 106 s(27.8 時間 - 11.6 日)の時間のリスト。

見る キセノンと1 E5 s

1 E6 s

106 - 107 s(11.6 日 - 116 日)の時間のリスト。

見る キセノンと1 E6 s

2011年

この項目では、国際的な視点に基づいた2011年について記載する。

見る キセノンと2011年

参考情報

全身麻酔薬

解離性麻酔薬

貴ガス

紫外線芳香族化合物融点面心立方格子構造術後嘔気嘔吐複層ガラス語源学講談社貴ガス化合物麻酔長さの比較酸化物酸素酸性酸化物電子電子ボルト電子捕獲Ppm暗黒物質核分裂反応気体気体定数沸点液体窒素液体酸素断熱過程断熱材1 E4 s1 E5 s1 E6 s2011年