ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ガスタービンエンジンと内燃機関

ショートカット: 違い類似点ジャカード類似性係数参考文献

ガスタービンエンジンと内燃機関の違い

ガスタービンエンジン vs. 内燃機関

タービンエンジンは、原動機の一種であり、燃料の燃焼等で生成された高温のガスでタービンを回して回転運動エネルギーを得る内燃機関である。重量や体積の割に高出力が得られることから、現在ではヘリコプターを含むほとんどの航空機に動力源として用いられている。また、始動時間が短く冷却水が不要なことから非常用発電設備として、さらに1990年代から大規模火力発電所においてガスタービン・蒸気タービンの高効率複合サイクル発電(コンバインドサイクル発電)として用いられている。. 4ストロークエンジン) (1)吸入 (2)圧縮 (3)燃焼・膨張 (4)排気 内燃機関(ないねんきかん)とは、燃料をシリンダー内で燃焼させ、燃焼ガスを直接作動流体として用いて、その熱エネルギーによって仕事をする原動機 特許庁。これに対して、燃焼ガスと作動流体が異なる原動機を外燃機関という。 インターナル・コンバッション・エンジン() の訳語であり、内部(インターナル)で燃料を燃焼(コンバッション)させて動力を取り出す機関(エンジン)である。「機関」も「エンジン」も、複雑な機構を持つ装置という意味を持つが、ここでは発動機という意味である。.

ガスタービンエンジンと内燃機関間の類似点

ガスタービンエンジンと内燃機関は(ユニオンペディアに)共通で30ものを持っています: 原動機ラムジェットエンジンレオナルド・ダ・ヴィンチレシプロエンジンロケットパルスジェットディーゼルエンジンフランク・ホイットルフランスドイツガソリンエンジンジェットエンジンスウェーデンゼネラル・エレクトリックターボプロップエンジンターボファンエンジンターボシャフトエンジンターボジェットエンジン熱効率熱機関の理論サイクル燃焼燃焼ガス燃料遠心式圧縮機運動エネルギー軸流式圧縮機都市ガス航空用エンジン蒸気機関自動車

原動機

原動機(げんどうき、)は、自然界に存在するさまざまなエネルギーを機械的な仕事(力学的エネルギー)に変換する機械・装置の総称。狭義にはタービンなどの仕事を発生する機械そのものを指すが、広義には蒸気原動機、動力プラントなどのシステム全体を指すこともある。.

ガスタービンエンジンと原動機 · 内燃機関と原動機 · 続きを見る »

ラムジェットエンジン

ラムジェットエンジンの構造 ラムジェットエンジン(Ramjet engine)は、ジェットエンジンの一種であり、一般には吸入した空気をラム圧(ram)により圧縮し、そこに燃料を噴射して燃焼させた排気の反動で推進力を得る。その構造より、英語ではストーブパイプエンジンとも呼ばれる。ターボジェットエンジンより構造が簡易・軽量になる利点がある。.

ガスタービンエンジンとラムジェットエンジン · ラムジェットエンジンと内燃機関 · 続きを見る »

レオナルド・ダ・ヴィンチ

レオナルドのサイン レオナルド・ダ・ヴィンチ (Leonardo da Vinci、 )1452年4月15日 - 1519年5月2日(ユリウス暦))は、イタリアのルネサンス期を代表する芸術家。フルネームはレオナルド・ディ・セル・ピエーロ・ダ・ヴィンチ (Leonardo di ser Piero da Vinci) で、音楽、建築、数学、幾何学、解剖学、生理学、動植物学、天文学、気象学、地質学、地理学、物理学、光学、力学、土木工学など様々な分野に顕著な業績と手稿を残し、「万能人 (uomo universale)」 という異名などで親しまれている。.

ガスタービンエンジンとレオナルド・ダ・ヴィンチ · レオナルド・ダ・ヴィンチと内燃機関 · 続きを見る »

レシプロエンジン

レシプロエンジン(英語:reciprocating engine)は、往復動機関あるいはピストンエンジン・ピストン機関とも呼ばれる熱機関の一形式である。 燃料の燃焼による熱エネルギーを作動流体の圧力(膨張力)としてまず往復運動に変換し、ついで回転運動の力学的エネルギーとして取り出す原動機である。燃焼エネルギーをそのまま回転運動として取り出すタービンエンジンやロータリーエンジンと対置される概念でもある。 レシプロエンジンは、自動車や船舶、20世紀前半までの航空機、非電化の鉄道で用いられる鉄道車両、といった乗り物の動力源としては最も一般的なもので、他に発電機やポンプなどの定置動力にも用いられる。.

ガスタービンエンジンとレシプロエンジン · レシプロエンジンと内燃機関 · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

ガスタービンエンジンとロケット · ロケットと内燃機関 · 続きを見る »

パルスジェット

パルスジェット(pulse jet) は、間欠燃焼型のジェットエンジンである。単純な構造のため、簡素で効率の良い熱供給源として給湯器などに応用されている。かつてはミサイルや航空機の推進装置として実用化されたこともあった。 構造が単純で市販レベルの材料でも制作できるため、ホビーとして個人で制作する者もいる。.

ガスタービンエンジンとパルスジェット · パルスジェットと内燃機関 · 続きを見る »

ディーゼルエンジン

ハ183系)用の高速ディーゼルエンジンの一例。DML30HSI形ディーゼルエンジン水平対向12気筒排気量30L(440PS/1,600rpm) 4サイクル・ディーゼルエンジンの動作 ディーゼルエンジン (英:Diesel engine) は、ディーゼル機関とも呼ばれる内燃機関であり、ドイツの技術者ルドルフ・ディーゼルが発明した往復ピストンエンジン(レシプロエンジン)である。1892年に発明され、1893年2月23日に特許を取得した。 ディーゼルエンジンは点火方法が圧縮着火である「圧縮着火機関」に分類され、ピストンによって圧縮加熱した空気に液体燃料を噴射することで着火させる。液体燃料は発火点を超えた圧縮空気内に噴射されるため自己発火する。 単体の熱機関で最も効率に優れる種類のエンジンであり、また軽油・重油などの石油系の他にも、発火点が225℃程度の液体燃料であればスクワレン、エステル系など広範囲に使用可能である。汎用性が高く、小型高速機関から巨大な船舶用低速機関までさまざまなバリエーションが存在する。 エンジン名称は発明者にちなむ。日本語表記では一般的な「ディーゼル」のほか、かつては「ヂーゼル」「ジーゼル」「デイゼル」とも表記された。日本の自動車整備士国家試験では現在でもジーゼルエンジンと表記している。.

ガスタービンエンジンとディーゼルエンジン · ディーゼルエンジンと内燃機関 · 続きを見る »

フランク・ホイットル

フランク・ホイットル (Frank Whittle、1907年6月1日 - 1996年8月9日)はイギリスの空軍士官、技術者。発音はホイットルよりもウィットルの方が近い。 ターボジェットエンジンの先覚者の1人である。.

ガスタービンエンジンとフランク・ホイットル · フランク・ホイットルと内燃機関 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

ガスタービンエンジンとフランス · フランスと内燃機関 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

ガスタービンエンジンとドイツ · ドイツと内燃機関 · 続きを見る »

ガソリンエンジン

4ストロークエンジン (1)吸入 (2)圧縮 (3)燃焼・膨張 (4)排気 ガソリンエンジン(gasoline engine)は、ガソリン機関ともいい、燃料であるガソリンと空気の混合気を圧縮したあと点火、燃焼(予混合燃焼)・膨張させるという行程を繰り返し、運動エネルギーを出力する内燃機関である。.

ガスタービンエンジンとガソリンエンジン · ガソリンエンジンと内燃機関 · 続きを見る »

ジェットエンジン

ェットエンジン(jet engine)とは、外部から空気を取り入れて噴流(ジェット)を生成し、その反作用を推進に利用する熱機関である。ジェットの生成エネルギーには、取り込んだ空気に含まれる酸素と燃料との化学反応(燃焼)の熱エネルギーが利用される。狭義には、空気吸い込み型の噴流エンジンだけを指す。また、主に航空機(固定翼機、回転翼機)やミサイルの推進機関または動力源として使用される。 ジェット推進は、噴流の反作用により推進力を得る。具体的には、噴流が生み出す運動量変化による反作用(反動)がダクトノズルやプラグノズルに伝わり、推進力が生成される。なお、ジェット推進と同様の噴流が最終的に生成されるものであっても、熱力学的に噴流を生成していないもの、例えばプロペラやファン推力などは、通常はジェット推進には含めない。プロペラやファンは、直接的には回転翼による揚力を推力としている。 ジェット推進を利用している熱機関であっても、ジェット推進を利用しているエンジン全てがジェットエンジンと認識されているわけではなく、外部から取り込んだ空気を利用しないもの(典型的には、ロケットエンジン)は、通俗的にはジェットエンジンに含められていない。ジェットエンジンとロケットエンジンは、用途とメカニズムが異なる。具体的には、ジェットエンジンは、推進のためのジェット噴流を生成するために外部から空気を取り入れる必要があるのに対し、ロケットエンジンは酸化剤を搭載して噴出ガスの反動で進むため、宇宙空間でも使用可能である点が強調される。その代わりにロケットエンジンの燃焼器より前に噴流は全くない。そのため吸気側の噴流も推進力に利用するジェットエンジンと比較して構造も大気中の効率も大幅に異なり、区別して扱われる。 現代の実用ジェットエンジンのほとんどは噴流の持続的な生成にガスタービン原動機を使っている。タービンとはラテン語の「回転するもの」という語源から来た連続回転機のことである。このため、連続的にガスジェットを生成できることが好都合であるが、実際にはタービンを使わないジェットエンジンも多数あり、タービンの有無はジェットエンジンであるか否かの本質とは関係ない。ただしガスタービン原動機を使うことで、回転翼推力とジェット推力の複合出力エンジンとして様々な最適化が可能になり、複数の形式が生まれた。 さらに、ジェットエンジンは熱機関の分類(すなわち「内燃機関」か「外燃機関」か)からも独立した概念である。つまり、ジェットエンジンは基本的には内燃機関であるが、実用化されていないものの、原子力ジェットエンジンのような純粋な外燃機関のジェットエンジンも存在しうる。.

ガスタービンエンジンとジェットエンジン · ジェットエンジンと内燃機関 · 続きを見る »

スウェーデン

ウェーデン王国(スウェーデンおうこく、スウェーデン語: )、通称スウェーデンは、北ヨーロッパのスカンディナヴィア半島に位置する立憲君主制国家。首都はストックホルム。西にノルウェー、北東にフィンランドと国境を接し、南西にカテガット海峡を挟んでデンマークと近接する。東から南にはバルト海が存在し、対岸のロシアやドイツとの関わりが深い。法定最低賃金は存在しておらず、スウェーデン国外の大企業や機関投資家に経済を左右されている。.

ガスタービンエンジンとスウェーデン · スウェーデンと内燃機関 · 続きを見る »

ゼネラル・エレクトリック

ネラル・エレクトリック(General Electric Company、略称: GE)は、アメリカ合衆国コネチカット州に本社を置く、多国籍コングロマリット企業である。.

ガスタービンエンジンとゼネラル・エレクトリック · ゼネラル・エレクトリックと内燃機関 · 続きを見る »

ターボプロップエンジン

ターボプロップエンジン(Turboprop Engine)とはガスタービンエンジンの1形態で、そのエネルギー出力の大部分をプロペラを回転させる力として取り出す機構を備えたエンジンである。ターボプロップエンジンは主に小型、あるいは低亜音速の航空機用動力として利用されるが、中には最大速度が500ノット (925 km/h) に達するような高速機においても適用例がある。.

ガスタービンエンジンとターボプロップエンジン · ターボプロップエンジンと内燃機関 · 続きを見る »

ターボファンエンジン

ターボファンエンジン(Turbofan engine)は、ジェットエンジンの一種。コアとなるターボジェットエンジンにファンを追加したものである。ファンを用いることにより、ターボジェットと異なり、コアエンジン部を迂回したエアフローが設定されている。このエアフローにより、ジェットエンジン推力の増大および効率化が行われる。1960年代より実用化が行われ、現代のジェットエンジンの主流となっているものである。.

ガスタービンエンジンとターボファンエンジン · ターボファンエンジンと内燃機関 · 続きを見る »

ターボシャフトエンジン

ターボシャフトエンジン(Turboshaft engine)はジェットエンジン/ガスタービンエンジンの一種。ジェットエンジンが排気の噴出力を推進力として利用するのに対し、タービン排気より軸出力を取り出し、それを用いる方式である。戦車や船舶用ガスタービンなども軸出力を用いている点では同等であるが、航空機用エンジンとして用いられている場合、ターボシャフトエンジンと呼ばれる。特にヘリコプター向けとして用いられている。.

ガスタービンエンジンとターボシャフトエンジン · ターボシャフトエンジンと内燃機関 · 続きを見る »

ターボジェットエンジン

ターボジェットエンジン(Turbojet engine)はジェットエンジンの一種。ターボファンエンジンやターボプロップエンジンに対し、レトロニムとしてピュアジェットエンジンとも言われる。.

ガスタービンエンジンとターボジェットエンジン · ターボジェットエンジンと内燃機関 · 続きを見る »

熱効率

熱効率(ねつこうりつ、thermal efficiency)とは、熱機関の性能を表現する物理量であり、熱として投入されるエネルギーのうち、機械的な仕事(動力)や電気的なエネルギー(電力)などに変換される割合である。 ある熱機関に投入される熱が であるときに取り出される仕事を と表した時の係数 がこの熱機関の熱効率である。 例として、熱機関であるエンジンの目的は、動力の供給である。1000ジュールの熱エネルギーが与えられたエンジンが300ジュール分の動力を出力した場合、このエンジンの熱効率は30%である。残りの700ジュールは発熱や摩擦抗力や震動など、目的ではない形の物理現象に消費され、目的外に費消されたのであり、損失と呼ばれる。熱効率は熱力学第一法則により1(100%)を越えることはなく、熱力学第二法則により1になることも決してない。 ニコラ・カルノーは思考実験で最も熱効率の良い仮想熱機関としてカルノーサイクルを提案した。カルノーサイクルの理論熱効率 は、吸熱源の温度を 、排熱源の温度を としたとき で与えられる。吸熱源の温度が高く、排熱源の温度が低いほど熱効率は大きいが、熱力学温度が必ず正であるため理論熱効率は必ず1より小さく、実際の熱効率はさらに小さくなる。また、吸熱源の温度が排熱源の温度より低い場合は熱効率が負になるため仕事を取り出すことはできない。逆に言えば、外部から仕事としてエネルギーを投入すれば、低温源から熱を吸収して高温源に熱を移動させることができる。このような機関はヒートポンプと呼ばれる。ヒートポンプの性能は熱効率に替えて成績係数という量で表現される。.

ガスタービンエンジンと熱効率 · 内燃機関と熱効率 · 続きを見る »

熱機関の理論サイクル

熱機関の理論サイクル(ねつきかんのりろんサイクル)は、 熱機関の作業物質が行うサイクル(一巡して元に戻る状態変化)を 単純化・理想化したサイクルのことであり、 一部を除いて可逆サイクルである。 実際の熱機関のサイクルは多少なりとも不可逆変化を伴っており、 ここで扱う理論サイクルとは異なっているが、 理論サイクルは熱機関の原理的理解や基本設計には必要なものである。熱サイクルともいう。 熱機関と逆の動作をする冷凍機のサイクルは、 熱機関のサイクルを逆に動作させたものと考えることができ、 ここでは、冷凍機の理論サイクルも含めて扱う。.

ガスタービンエンジンと熱機関の理論サイクル · 内燃機関と熱機関の理論サイクル · 続きを見る »

燃焼

燃焼(ねんしょう)とは、可燃物(有機化合物やある種の元素など)が空気中または酸素中で光や熱の発生を伴いながら、比較的激しく酸素と反応する酸化反応のことである(ろうそくの燃焼、木炭の燃焼、マグネシウムの燃焼など)。 また、火薬類のように酸化剤(硝酸塩、過塩素酸塩など)から酸素が供給される場合は、空気が無くても燃焼は起こる。 広義には次のような反応も燃焼と呼ぶことがある。.

ガスタービンエンジンと燃焼 · 内燃機関と燃焼 · 続きを見る »

燃焼ガス

燃焼ガス(ねんしょうガス)とは、石油、石炭といった燃料が燃焼するときに発生する高温の気体である。 原動機では回転動力を得るために意図的に燃焼させ、発生した熱エネルギーを運動エネルギーへ変換している。機関内で仕事を終えた燃焼ガスは排出され、排出ガス/排気ガスとなる。.

ガスタービンエンジンと燃焼ガス · 内燃機関と燃焼ガス · 続きを見る »

燃料

木は最も古くから利用されてきた燃料の1つである 燃料(ねんりょう)とは、化学反応・原子核反応を外部から起こすことなどによってエネルギーを発生させるもののことである。古くは火をおこすために用いられ、次第にその利用の幅を広げ、現在では火をおこさない燃料もある。.

ガスタービンエンジンと燃料 · 内燃機関と燃料 · 続きを見る »

遠心式圧縮機

遠心式圧縮機(えんしんしきあっしゅくき、centrifugal compressor, radial compressor)とは、気体を羽根車からディフューザーに流し遠心方向(径方向)に徐々に減速させることにより、運動エネルギーの変換が行われる圧縮機であるJIS B 0132 2005。遠心圧縮機、遠心コンプレッサーともいう。.

ガスタービンエンジンと遠心式圧縮機 · 内燃機関と遠心式圧縮機 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

ガスタービンエンジンと運動エネルギー · 内燃機関と運動エネルギー · 続きを見る »

軸流式圧縮機

軸流式圧縮機のアニメーション。静止している部分は静翼 軸流式圧縮機(じくりゅうしきあっしゅくき、Axial compressor)とは、流体機械である圧縮機の一種で、ターボ圧縮機に分類される。回転翼の前後に生じる圧力差を利用し、気体を連続的に圧縮する装置。軸流コンプレッサ(ー)とも呼ばれる。.

ガスタービンエンジンと軸流式圧縮機 · 内燃機関と軸流式圧縮機 · 続きを見る »

都市ガス

都市ガス(としガス、英語:town gas, city gas)は、一般的にガスホルダーや採掘拠点等から広域的に供給販売されているガスをいう。.

ガスタービンエンジンと都市ガス · 内燃機関と都市ガス · 続きを見る »

航空用エンジン

航空用エンジン (こうくうようエンジン、英語:Aircraft engine)または航空エンジンは、航空機に搭載され、航空機の飛行に必要な推力(推進力)を生み出すエンジンである。補助動力装置やラムエア・タービンなど電源や油圧を確保するエンジンは含まれない。 現在使われている航空機用エンジンは全て内燃機関であるが、研究用又はデモンストレーション用に電動機などを使ったものが存在する(後述)。.

ガスタービンエンジンと航空用エンジン · 内燃機関と航空用エンジン · 続きを見る »

蒸気機関

蒸気機関(じょうききかん)は、ボイラで発生した蒸気のもつ熱エネルギーを機械的仕事に変換する熱機関の一部であり、ボイラ等と組み合わせて一つの熱機関となる。作業物質である水を外部より加熱する外燃機関に分類される。 蒸気機関には、蒸気をシリンダに導き、ピストンを往復運動させる往復動型のものと、蒸気で羽根車をまわすタービン型のものとが存在する。本稿では主として往復動型のものを説明する。タービン型のものについては蒸気タービンを参照のこと。.

ガスタービンエンジンと蒸気機関 · 内燃機関と蒸気機関 · 続きを見る »

自動車

特殊作業車の例(ダンプカー) 自動車(じどうしゃ、car, automobile)とは、原動機の動力によって車輪を回転させ、軌条や架線を用いずに路上を走る車のこと。.

ガスタービンエンジンと自動車 · 内燃機関と自動車 · 続きを見る »

上記のリストは以下の質問に答えます

ガスタービンエンジンと内燃機関の間の比較

内燃機関が121を有しているガスタービンエンジンは、324の関係を有しています。 彼らは一般的な30で持っているように、ジャカード指数は6.74%です = 30 / (324 + 121)。

参考文献

この記事では、ガスタービンエンジンと内燃機関との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »