ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

エキスパンダーサイクルと液体燃料ロケット

ショートカット: 違い類似点ジャカード類似性係数参考文献

エキスパンダーサイクルと液体燃料ロケットの違い

エキスパンダーサイクル vs. 液体燃料ロケット

フルエキスパンダーサイクルの模式図。ノズルと燃焼室から熱を受け取った推進剤でターボポンプを駆動する。 エキスパンダーサイクル(expander cycle)とは二液推進系ロケットエンジンの動作サイクルの1つである。燃料蒸気を作用気体としてターボポンプを駆動し、液体燃料と酸化剤を燃焼室に送りロケットの推進を実現する、蒸気機関と内燃機関の複合サイクルエンジンである。. 液体燃料ロケット(えきたいねんりょうロケット)は、液体の燃料と酸化剤をタンクに貯蔵し、それをエンジンの燃焼室で適宜混合して燃焼させ推力を発生させるロケットである。単に液体ロケットとも呼ばれる。人工衛星の姿勢制御エンジンなど一部には過酸化水素やヒドラジンのように自己分解を起こす推進剤を触媒等で分解して噴射する、簡単な構造の一液式のものもある。 液体燃料は一般的に燃焼ガスの平均分子量が小さく、固体燃料に比べて比推力に優れているうえ、推力可変機能、燃焼停止や再着火などの燃焼制御機能を持つことができる。また、エンジン以外のタンク部分は単に燃料を貯蔵しているだけなので、特に大型のロケットでは構造効率の良いロケットが製作できる。一方、燃焼室や噴射器、ポンプなどの機構は複雑で小型化が困難なので、小型のロケットでは同規模の固体ロケットに比べて構造効率は悪化する。また、推進剤の種別によっては、腐食性や毒性を持ち貯蔵が困難であったり、極低温なため断熱や蒸発したガスの管理、蒸発した燃料の補充などで取り扱いに難があるものもある。.

エキスパンダーサイクルと液体燃料ロケット間の類似点

エキスパンダーサイクルと液体燃料ロケットは(ユニオンペディアに)共通で16ものを持っています: 二段燃焼サイクル圧送式サイクルメタンガス発生器サイクルターボポンプ再生冷却H-IIAロケットH3ロケットLE-5ALE-5BLE-9RD-0146RL-10Vinci (ロケットエンジン)液体酸素液体水素

二段燃焼サイクル

二段燃焼サイクル(にだんねんしょうサイクル)とは2液推進系ロケットエンジンの動作サイクルの1つである。推進剤の一部をプレバーナー(予燃焼室)であらかじめ燃焼させ、その燃焼ガスでターボポンプを駆動させる。その時の燃焼ガスはターボポンプで加圧された推進剤とともに主燃焼室に送られ燃焼する。 酸化剤と酸化される燃料という構成の場合、予燃における混合比について燃料リッチと酸化剤リッチの2つの場合がある。スペースシャトルのエンジンSSMEなどは燃料の比率が高い燃料リッチ(SSMEの場合は水素リッチ)であり、エネルギアのブースターに用いられたエンジンRD-170などは酸化剤の比率が高い酸化剤リッチ(この場合は酸素リッチ)である。酸素リッチの方が高出力を得られるが、高温の酸化性ガスにエンジン内面が晒されるという難しさがあり、旧ソビエト連邦~ロシアおよび中国以外では実用化された例がない。 二段燃焼サイクルの優位な点は、すべての推進剤が主燃焼室での燃焼に利用されエンジン全体としての比推力が高いこと、また高圧で燃焼できるため大気圧下においても効率の良い高膨張比のノズルを用いることが出来ることである。一方、部品点数が多くなり開発や製造はより困難になる。プレバーナーで発生させるガスはターボポンプを駆動した後においてもなお主燃焼室よりも高い圧力を保っていなくてはならないから、プレバーナーは極めて高圧で動作しなくてはならない。したがってプレバーナーに供給される推進剤を加圧するターボポンプはさらなる高圧で動作する必要が生じる。このようにシステム全体できわめて高い圧力での動作を要求することが二段燃焼サイクルエンジンの開発が困難な大きな理由である。.

エキスパンダーサイクルと二段燃焼サイクル · 二段燃焼サイクルと液体燃料ロケット · 続きを見る »

圧送式サイクル

圧送式サイクルの模式図。加圧された燃料タンクから燃料及び酸化剤を供給するため、ターボポンプを必要としない。 圧送式サイクル(あっそうしきサイクル)またはガス押し式サイクル(ガスおししきサイクル)とは、ロケットエンジンの動作方式の1つである。推進剤タンクに別系統の高圧ガスを供給し、そのガス圧力で燃料と酸化剤を燃焼室に押し出す仕組みである。最も単純で、低コストな二液推進系ロケットエンジンの形式である。圧送用の高圧ガスには通常ヘリウムが用いられる。.

エキスパンダーサイクルと圧送式サイクル · 圧送式サイクルと液体燃料ロケット · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

エキスパンダーサイクルとメタン · メタンと液体燃料ロケット · 続きを見る »

ガス発生器サイクル

生器サイクル (ガスはっせいきサイクル)またはガスジェネレータサイクル、オープンサイクルは、2液推進系ロケットエンジンの動作サイクルの1つである。 燃料と酸化剤の一部を主燃焼室とは別のガス発生器(副燃焼室)で燃焼させ、その燃焼ガスで燃料・酸化剤を供給するターボポンプを駆動させる。ターボポンプを駆動した後のガスはそのまま排出される。 ガス発生器サイクルには、同様に副燃焼室を用いる二段燃焼サイクルに比べいくつかの有利な点がある。ガス発生器に燃料・酸化剤を送る場合には、二段燃焼サイクルの高圧のプレバーナーへ推進剤を供給する場合のように高い圧力を加える必要がない。そのためにターボポンプの開発や製造はより容易になる。二段燃焼サイクルに比べて比推力でやや劣り推力も下がるものの、開発や製造にかかるコストを抑える事が出来る。なお、ガス発生器用に用いられている燃料・酸化剤が直接出力に寄与しないため、推進剤効率の面では劣る部分がある。 ガス発生器サイクルを採用している主なロケットエンジンとしては、サターンVの第1段エンジンF-1や、その上段エンジンのJ-2、アリアン5のヴァルカンなどがある。日本においては、H-IロケットのLE-5がこの形式である。 ファルコン1第1段のマーリンは最新式のガス発生器式エンジンの一例である。.

エキスパンダーサイクルとガス発生器サイクル · ガス発生器サイクルと液体燃料ロケット · 続きを見る »

ターボポンプ

V2ロケットのターボポンプ ターボポンプ.

エキスパンダーサイクルとターボポンプ · ターボポンプと液体燃料ロケット · 続きを見る »

再生冷却

再生冷却とは気化潜熱を利用して冷却する方法。ロケットエンジンや冷凍機や冷房装置に使用されている。.

エキスパンダーサイクルと再生冷却 · 再生冷却と液体燃料ロケット · 続きを見る »

H-IIAロケット

H-IIA ロケット(エイチツーエー ロケット)は、宇宙開発事業団(NASDA)と後継法人の宇宙航空研究開発機構(JAXA)と三菱重工が開発し三菱重工が製造および打ち上げを行う、人工衛星打ち上げ用液体燃料ロケットで使い捨て型のローンチ・ヴィークル。JAXA内での表記は「H-IIAロケット」で、発音は「エイチツーエーロケット」であるが、新聞やテレビなどの報道では、「H2Aロケット」または「H-2Aロケット」と表記され、「エイチにエーロケット」と発音される場合が多い。.

H-IIAロケットとエキスパンダーサイクル · H-IIAロケットと液体燃料ロケット · 続きを見る »

H3ロケット

H3ロケット(エイチ・スリー・ロケット、短縮形:H3)は、宇宙航空研究開発機構 (JAXA) と三菱重工業が次期基幹ロケットとして開発中の液体燃料ロケットで使い捨て型のローンチ・ヴィークル。試験1号機は2020年度の打ち上げ予定。.

H3ロケットとエキスパンダーサイクル · H3ロケットと液体燃料ロケット · 続きを見る »

LE-5A

LE-5Aは宇宙開発事業団(NASDA)が航空宇宙技術研究所(NAL)や三菱重工業(MHI)、石川島播磨重工業(IHI)と共に開発したロケットエンジンである。.

LE-5Aとエキスパンダーサイクル · LE-5Aと液体燃料ロケット · 続きを見る »

LE-5B

LE-5Bは日本で開発されたロケットエンジンであり、H-IIAロケット・H-IIBロケットの第二段エンジンである。 H-Iロケットの第二段エンジンであるLE-5の流れをくみ、H-IIロケットの第二段エンジンLE-5Aをもとに主にコストダウンをはかった改良型。推進剤は液体酸素(LOX)と液体水素(LH2)で真空中推力は137.2kN(.

LE-5Bとエキスパンダーサイクル · LE-5Bと液体燃料ロケット · 続きを見る »

LE-9

LE-9は、宇宙航空研究開発機構(JAXA)が三菱重工業とIHIと共に開発中のH3ロケットの第1段用液体燃料ロケットエンジン。H3ではペイロードの重量や投入軌道に合わせてLE-9を2基若しくは3基クラスター化して使用する。「キー技術関連事業社」として三菱重工業がエンジンシステムを、IHIがターボポンプの開発を担当している。.

LE-9とエキスパンダーサイクル · LE-9と液体燃料ロケット · 続きを見る »

RD-0146

RD-0146 (ロシア語:РД-0146) はキマフトマティキとプラット&ホイットニー・ロケットダインとの共同開発によるロシアの低温液体燃料ロケットエンジンである。ロケットダインのRL-10のロシア版と言える。RD-0146エンジンはロシアのヴォロネジのキマフトマティキ設計局がアメリカのプラット&ホイットニー・ロケットダインと協力してできた。2009年にロシア連邦宇宙局は開発中の次世代のPPTS有人宇宙船のRus-Mロケットの2段目にこのエンジンを採用したhttp://www.russianspaceweb.com/rd0146.html。.

RD-0146とエキスパンダーサイクル · RD-0146と液体燃料ロケット · 続きを見る »

RL-10

試験中のRL-10 デルタIVロケットの2段目のRL10B-2 RL-10はアメリカ合衆国で初の液体水素燃料のエンジンである。サターンI 型ロケットの2段目であるS-IVに6基が使用された。1または2基のRL-10がアトラスやタイタンの上段のセントールに使用された。.

RL-10とエキスパンダーサイクル · RL-10と液体燃料ロケット · 続きを見る »

Vinci (ロケットエンジン)

ヴィンチ(Vinci)は欧州宇宙機関が開発中のロケットエンジンである。アリアン5の新型の上段に搭載される予定で、欧州初の再着火機能を持つ上段エンジンになる予定である。12トンのペイロードをGTOへ投入できる見込みである。.

Vinci (ロケットエンジン)とエキスパンダーサイクル · Vinci (ロケットエンジン)と液体燃料ロケット · 続きを見る »

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。.

エキスパンダーサイクルと液体酸素 · 液体燃料ロケットと液体酸素 · 続きを見る »

液体水素

液体水素用タンク 液体水素(えきたいすいそ)とは、液化した水素のこと。沸点は-252.6℃で融点は-259.2℃である(重水素では、沸点-249.4℃)。水素の液化は、1896年にイギリスのジェイムズ・デュワーが初めて成功した。.

エキスパンダーサイクルと液体水素 · 液体水素と液体燃料ロケット · 続きを見る »

上記のリストは以下の質問に答えます

エキスパンダーサイクルと液体燃料ロケットの間の比較

液体燃料ロケットが150を有しているエキスパンダーサイクルは、36の関係を有しています。 彼らは一般的な16で持っているように、ジャカード指数は8.60%です = 16 / (36 + 150)。

参考文献

この記事では、エキスパンダーサイクルと液体燃料ロケットとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »