ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

エアリー関数とシュレーディンガー方程式

ショートカット: 違い類似点ジャカード類似性係数参考文献

エアリー関数とシュレーディンガー方程式の違い

エアリー関数 vs. シュレーディンガー方程式

物理科学におけるエアリー函数(エアリーかんすう、Airy function)あるいは第一種エアリー函数 (Airy function of the first kind) は、イギリスの天文学者ジョージ・ビドル・エアリー (1801–92) に因んで名づけられた特殊函数である。この函数 および第二種エアリー函数とも呼ばれる関連の函数(A を次の文字 B に変えて、故に冗談めかしてベアリー (Biry) 函数とも) は、エアリー方程式あるいはストークス方程式と呼ばれる微分方程式 の線型独立な解としても言及される。これは転回点(turning point: 方程式の解が振動型から指数型へ変わる特徴点)を持つ最も単純な二階線型微分方程式である。 エアリー函数は三角ポテンシャル井戸に留め置かれた粒子に対する、あるいは一次元定力場における粒子に対するシュレーディンガー方程式の解である。同じ理由により、ポテンシャルが位置の線型函数で局所近似されるときの、転回点の周りでのWKB近似として、エアリー函数は一様半古典近似を与えるのに利用できる。三角ポテンシャル井戸解は、多くの半導体デバイスを理解することに直接的に関係がある。 エアリー函数はまた、虹のような。歴史的にはこれがエアリーがこの特殊函数を導入するに至った数学的問題であった。またエアリー函数はや天文学においても重要である。つまり、エアリー函数は(顕微鏡や望遠鏡の解像限界よりも小さな)によって与えられる回折や干渉のパターンを記述する。. ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

エアリー関数とシュレーディンガー方程式間の類似点

エアリー関数とシュレーディンガー方程式は(ユニオンペディアに)共通で8ものを持っています: 干渉 (物理学)井戸型ポテンシャル微分方程式フーリエ変換光学線型微分方程式物理学者WKB近似

干渉 (物理学)

2波干渉 物理学における波の干渉(かんしょう、interference)とは、複数の波の重ね合わせによって新しい波形ができることである。互いにコヒーレントな(相関性が高い)波のとき干渉が顕著に現れる。このような波は、同じ波源から出た波や、同じもしくは近い周波数を持つ波である。.

エアリー関数と干渉 (物理学) · シュレーディンガー方程式と干渉 (物理学) · 続きを見る »

井戸型ポテンシャル

井戸型ポテンシャル(いどがたポテンシャル)とは、量子力学の初歩で扱う例題である。例題としては極めて平易であるが、得られる結果は量子力学の特性をよく反映しているので、多くの教科書・演習書に取り上げられている。 様々なバリエーションがあるが、全てに共通する設定としては、ある有界領域Dを定め、ポテンシャルVを とする (V00.

エアリー関数と井戸型ポテンシャル · シュレーディンガー方程式と井戸型ポテンシャル · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

エアリー関数と微分方程式 · シュレーディンガー方程式と微分方程式 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

エアリー関数とフーリエ変換 · シュレーディンガー方程式とフーリエ変換 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

エアリー関数と光学 · シュレーディンガー方程式と光学 · 続きを見る »

線型微分方程式

線型微分方程式線形等の用字・表記の揺れについては線型性を参照。(せんけいびぶんほうていしき、linear differential equation)は、微分を用いた線型作用素(線型微分作用素) と未知関数 と既知関数 を用いて の形に書かれる微分方程式のこと。.

エアリー関数と線型微分方程式 · シュレーディンガー方程式と線型微分方程式 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

エアリー関数と物理学者 · シュレーディンガー方程式と物理学者 · 続きを見る »

WKB近似

物理学、特に量子力学において、WKB近似(-きんじ、WKB approximation)、またはWKB法とはシュレディンガー方程式の半古典論的な近似解法の一つ L. D. Landau and E.M. Lifshitz (1981), chapter.VII猪木、河合(1994), 第10章。プランク定数を古典力学と量子力学を結びつける摂動パラメーターとみなした摂動であり、古典力学と量子力学の対応関係を説明する新たな観点を与える。WKBの名は、量子力学の研究の中で理論の発展に寄与した3人の物理学者(Wentzel)、クラマース(Kramers)、ブリルアン(Brillouin)らの頭文字に因むものである。なお、応用数学者で地球科学者であるジェフリーズ(Jeffreys)も独自にこの手法を考案し、多くの問題に適用したことから、その名を加え、WKBJ近似とも呼ばれる。WKB近似は最高階の導関数に摂動パラメーターが乗じられた特異摂動問題を扱う手法の一つであり、シュレディンガー方程式のみならず、より一般的な線形微分方程式の特異摂動問題にも応用される柴田(2009)。.

WKB近似とエアリー関数 · WKB近似とシュレーディンガー方程式 · 続きを見る »

上記のリストは以下の質問に答えます

エアリー関数とシュレーディンガー方程式の間の比較

シュレーディンガー方程式が235を有しているエアリー関数は、35の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は2.96%です = 8 / (35 + 235)。

参考文献

この記事では、エアリー関数とシュレーディンガー方程式との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »