ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

イントロン

索引 イントロン

イントロン(intron)は、転写はされるが最終的に機能する転写産物からスプライシング反応によって除去される塩基配列。つまり、アミノ酸配列には翻訳されない。スプライシングによって除去されず、最終的にアミノ酸配列に翻訳される部位をエキソンと呼ぶ。 イントロンは一見無駄に見えるが、選択的スプライシングや、エキソンシャッフリングを可能にし、また、mRNAを核から運び出す過程や、翻訳効率などに関わっていることがわかってきた。.

26 関係: 古細菌塩基配列伝令RNAユーグレナリボザイムリボソームRNAリボ核酸ヌクレアーゼテトラヒメナデオキシリボ核酸アデノウイルスウイルスエクソンスプライシングスプライソソーム哺乳類細胞核翻訳 (生物学)真核生物真正細菌選択的スプライシング遺伝子転写 (生物学)転移RNA電子顕微鏡1977年

古細菌

古細菌(こさいきん、アーキア、ラテン語:archaea/アルカエア、単数形:archaeum, archaeon)は、生物の分類の一つで、''sn''-グリセロール1-リン酸のイソプレノイドエーテル(他生物はsn-グリセロール3-リン酸の脂肪酸エステル)より構成される細胞膜に特徴付けられる生物群、またはそこに含まれる生物のことである。古"細菌"と名付けられてはいるが、細菌(バクテリア。本記事では明確化のため真正細菌と称する)とは異なる系統に属している。このため、始原菌(しげんきん)や後生細菌(こうせいさいきん)という呼称が提案されたが、現在では細菌や菌などの意味を含まない を音写してアーキアと呼ぶことが多くなっている。 形態はほとんど細菌と同一、細菌の一系統と考えられていた時期もある。しかしrRNAから得られる進化的な近縁性は細菌と真核生物の間ほども離れており、現在の生物分類上では独立したドメインまたは界が与えられることが多い。一般には、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌など、極限環境に生息する生物として認知されている。.

新しい!!: イントロンと古細菌 · 続きを見る »

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: イントロンと塩基配列 · 続きを見る »

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

新しい!!: イントロンと伝令RNA · 続きを見る »

ユーグレナ

ユーグレナ(Euglena ).

新しい!!: イントロンとユーグレナ · 続きを見る »

リボザイム

リボザイム (ribozyme) は、触媒としてはたらくリボ核酸 (RNA) のこと。リボ酵素ともよばれる。トーマス・チェック、シドニー・アルトマンによって発見された(両名はこの功績により、1989年にノーベル化学賞を受賞している)。 以前は、生体反応はすべてタンパク質でできた触媒である酵素が制御していると考えられていた。しかし、一部の反応はRNAが制御していることが見出され、これをRNAと酵素 (Enzyme) に因んでリボザイムと命名した。 リボザイムは、それだけでRNA自身を切断したり、貼り付けたり、挿入したり、移動したりする活性・能力(自己スプライシング機能)を持っている。つまり、RNAが自分で自分を編集することを可能にしている。リボザイムは、RNAの翻訳産物であるタンパク質の多様化に非常に貢献していると考えられている。 リボザイムの発見は、RNAが遺伝情報と反応の両方を扱うことができることを証明し、生命の起源時はRNAが重要な役割を果たしていたとするRNAワールド仮説を生み出すきっかけとなった。またヒト免疫不全ウイルス (HIV) 治療の新たな戦略になる可能性を提供し、幅広く研究が行われている。.

新しい!!: イントロンとリボザイム · 続きを見る »

リボソームRNA

リボソームRNAはリボソームを構成するRNAであり、RNAとしては生体内でもっとも大量に存在する(7~8割程度)。通常rRNAと省略して表記される。 原核生物では沈降係数に由来する命名で23Sと5Sがリボソーム大サブユニット(50Sサブユニット)に含まれる。また小サブユニット(30Sサブユニット)には16SrRNAが含まれる。クレンアーキオータ(5Sが独立している)を除き16S, 23S, 5Sの順に並んだオペロン構造を持っている。 真核生物の大サブユニット(60Sサブユニット)には一般に28Sと5.8S、5S rRNA、小サブユニット(40Sサブユニット)には18S rRNAが含まれるが、種によってその数字には若干の違いがある。 ヒトにおいてはこのうち28S、5.8S、18S RNAは一つの転写単位に由来する。これはrRNA前駆体と呼ばれる約2 kbのRNAであり、RNAポリメラーゼIによって核小体で転写される。転写されたrRNA前駆体は、snoRNAなどの様々なRNAやタンパク質の働きをうけて、不要な部分が取り除かれ、また修飾を受けてrRNAになる。一方、5S RNAはRNAポリメラーゼIIIにより転写される。 rRNAはタンパク質合成の触媒反応の活性中心を形成していると考えられている。.

新しい!!: イントロンとリボソームRNA · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: イントロンとリボ核酸 · 続きを見る »

ヌクレアーゼ

ヌクレアーゼ(Nuclease)は核酸分解酵素の総称。デオキシリボ核酸ないしリボ核酸の糖とリン酸の間のホスホジエステル結合を加水分解してヌクレオチドとする。 RNAを分解するリボヌクレアーゼとDNAを分解するデオキシリボヌクレアーゼに分類できる他、両方を分解することができるヌクレアーゼも知られており、その役割も様々である。ウイルスが有するヌクレアーゼには宿主の核酸を分解して自らの核酸の原料とする役割をもつものがある。また、制限酵素もヌクレアーゼの一種であり、これは外来の核酸を分解してウイルスの感染、増殖を防ぐ役割があると考えられている。核酸がメチル化されているとヌクレアーゼは働かなくなるため、自分の核酸を無闇に分解しないようにこの酵素を有する細菌も多い。多細胞生物においては死滅した細胞の核酸を分解するためにヌクレーゼが生産されることがあるほか、特殊な例としては紫外線などの影響で二量化したチミジンをとりはずすためのヌクレアーゼが存在する。 分解の型式により、エンドヌクレアーゼとエキソヌクレアーゼという分類もできる。; エンドヌクレアーゼ(英:endonuclease); エキソヌクレアーゼ(英:exonuclease) ぬくれあせ *.

新しい!!: イントロンとヌクレアーゼ · 続きを見る »

テトラヒメナ

テトラヒメナ(学名:Tetrahymena)は水中に生息する繊毛虫の属の一つ。洋梨型の形態をしており、体長は 30-100 μm 程度。多数の繊毛が生えており、これによって運動する。細胞内には収縮胞がある。細胞核は大核と小核にわかれており、小核は生殖核とも呼ばれる。小核は通常の染色体数をもち、細胞分裂のたびに受け継がれてゆく。大核は多細胞生物でいうと体細胞のような役割をしており、多倍体として生活に必要な遺伝子のコピー数を増やしている。大核には染色体の末端が多数存在するため、テロメア研究のモデル生物として用いられた。また触媒機能をもつ RNAリボザイムもテトラヒメナにおいて初めて発見された。 テトラヒメナ属の.

新しい!!: イントロンとテトラヒメナ · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: イントロンとデオキシリボ核酸 · 続きを見る »

アデノウイルス

アデノウイルスは、二重鎖直鎖状DNAウイルスで、カプシドは直径約80nmの正20面体の球形粒子をしており、エンベロープは持たない。アデノウイルスは感染性胃腸炎、ライノウイルス等とともに、「風邪症候群」を起こす主要病原ウイルスの一つと考えられている。.

新しい!!: イントロンとアデノウイルス · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: イントロンとウイルス · 続きを見る »

エクソン

mRNA 前駆体の構造 エクソン(、エキソン と表記される場合もある)は、デオキシリボ核酸()またはリボ核酸()の塩基配列中で成熟RNA に残る部分を指す。 一般に真核生物では、DNA から転写されたmRNA前駆体はスプライシング反応によって長さが縮小される。スプライシングで残る部位がエクソンと呼ばれ、除去される部位がイントロンと呼ばれる。エクソンはタンパク質に翻訳されるコーディング領域()と、翻訳されない非翻訳領域()で構成される。UTR はコーディング領域を挟んで存在し、開始コドンより上流を 5' UTR、終止コドンより下流を 3' UTR と呼ぶ。 またタンパク質をコードしない転移RNA もスプライシングを受けてRNA が成熟するためエクソンが存在する。 エクソンの組み合わせの変化によって新たな遺伝子が作られることが、生物の進化に重要な役割を担っているという学説があり「エクソンシャッフリング仮説」と呼ばれる。これはタンパク質の機能単位である「モジュール」がエクソンと対応していることが多いことを根拠としている。.

新しい!!: イントロンとエクソン · 続きを見る »

スプライシング

プライシング (splicing) は、細長い物をつなぐ様子を表す言葉。.

新しい!!: イントロンとスプライシング · 続きを見る »

スプライソソーム

プライソソーム(Spliceosome)はタンパク質とRNAの複合体で、転写されたmRNA前駆体からイントロンを取り除いて成熟RNAにする機能を持つ。この過程はPre-mRNA スプライシングと呼ばれる。 それぞれのスプライソソームは、5つの核内低分子リボ核タンパク質(snRNP)といくつかのタンパク質因子から構成されている。 スプライソソームを構成するsnRNPはU1、U2、U4、U5、U6と名づけられ、RNA-RNA間相互作用やRNA-タンパク質間相互作用に関係している。snRNPのRNA部分はウリジンに富んでいる。 mRNA前駆体はスプライソソームに認識され、再配列を起こさせる特異的な配列を持っている。これは、5'末端スプライス部位、分岐点配列(BPS)、ポリピリミジン領域、3'末端スプライス部位からなっている。スプライソソームはイントロンの除去を触媒し、エクソン同士を連結させる。 イントロンは、5'末端側にGTの配列、3'末端側にAGの配列を持つ場合が多い。3'末端側には他に様々な長さのポリピリミジンもあり、3'末端やBPSに補因子を引き寄せる働きをしている。BPSには、スプライシングの初期段階に必要になる保存されたアデノシン残基がある。.

新しい!!: イントロンとスプライソソーム · 続きを見る »

哺乳類

哺乳類(ほにゅうるい、英語:Mammals, /ˈmam(ə)l/、 学名:)は、脊椎動物に分類される生物群である。分類階級は哺乳綱(ほにゅうこう)とされる。 基本的に有性生殖を行い、現存する多くの種が胎生で、乳で子を育てるのが特徴である。ヒトは哺乳綱の中の霊長目ヒト科ヒト属に分類される。 哺乳類に属する動物の種の数は、研究者によって変動するが、おおむね4,300から4,600ほどであり、脊索動物門の約10%、広義の動物界の約0.4%にあたる。 日本およびその近海には、外来種も含め、約170種が生息する(日本の哺乳類一覧、Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh eds.

新しい!!: イントロンと哺乳類 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: イントロンと細胞核 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

新しい!!: イントロンと翻訳 (生物学) · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: イントロンと真核生物 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: イントロンと真正細菌 · 続きを見る »

選択的スプライシング

選択的スプライシング(せんたくてき-,Alternative Splicing)とはDNAからの転写過程において特定のエクソンをとばしてスプライシングを行うことである。択一的スプライシングとも呼ばれる。 遺伝子にはアミノ酸配列に関する情報を含む核酸塩基配列(エクソン)が遺伝情報を含まない配列(イントロン)によっていくつかに分断されている。通常、DNAからmRNAへの転写が行われる際にはこれらのすべてが順に転写されていく。その後、転写生成物(mRNA前駆体)からイントロン部分の切り捨てが行われてエキソン部分が連結し成熟mRNAが出来上がるが、この不要な部分の切り捨ての過程をスプライシングと呼んでいる。 しかし、時にスプライシングを行う部位・組み合わせが変化し、複数種の成熟mRNAが生成することがある。これを選択的スプライシングと呼び、ひとつの遺伝子から多数の生成物が生じてくることになる。選択的スプライシングによってスプライスバリアント(splice variant)と呼ばれる変異タンパク質が生成される。.

新しい!!: イントロンと選択的スプライシング · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: イントロンと遺伝子 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: イントロンと転写 (生物学) · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

新しい!!: イントロンと転移RNA · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: イントロンと電子顕微鏡 · 続きを見る »

1977年

記載なし。

新しい!!: イントロンと1977年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »