ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

イットリウムとトリウム

ショートカット: 違い類似点ジャカード類似性係数参考文献

イットリウムとトリウムの違い

イットリウム vs. トリウム

イットリウム(yttrium )は原子番号39の元素である。元素記号はYである。単体は軟らかく銀光沢をもつ金属である。遷移金属に属すがランタノイドと化学的性質が似ているので希土類元素に分類される。唯一の安定同位体89Yのみ希土類鉱物中に存在する。単体は天然には存在しない。 1787年にがスウェーデンのイッテルビーの近くで未知の鉱物を発見し、町名にちなんで「イッテルバイト」と名づけた。ヨハン・ガドリンはアレニウスの見つけた鉱物からイットリウムの酸化物を発見し、アンデルス・エーケベリはそれをイットリアと名づけた。1828年にフリードリヒ・ヴェーラーは鉱物からイットリウムの単体を取り出した。イットリウムは蛍光体に使われ、赤色蛍光体はテレビのブラウン管ディスプレイやLEDに使われている。ほかには電極、電解質、電気フィルタ、レーザー、超伝導体などに使われ、医療技術にも応用されている。イットリウムは生理活性物質ではないが、その化合物は人間の肺に害をおよぼす。. トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

イットリウムとトリウム間の類似点

イットリウムとトリウムは(ユニオンペディアに)共通で31ものを持っています: 原子番号原子量同位体塩基性酸化物塩酸展延性不動態中性子常磁性希土類元素人工放射性元素ネオジムモナズ石ランタノイドランタンフッ化物フッ化水素酸ベータ崩壊オックスフォード大学出版局セリウムタングステン元素硝酸第17族元素融点触媒超新星自然発火電極核異性体...1828年 インデックスを展開 (1 もっと) »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

イットリウムと原子番号 · トリウムと原子番号 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

イットリウムと原子量 · トリウムと原子量 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

イットリウムと同位体 · トリウムと同位体 · 続きを見る »

塩基性酸化物

塩基性酸化物(えんきせいさんかぶつ、Basic oxide)とは、水と反応して塩基を生じる、または酸と反応して塩を生じる金属元素の酸化物である。.

イットリウムと塩基性酸化物 · トリウムと塩基性酸化物 · 続きを見る »

塩酸

塩酸(えんさん、hydrochloric acid)は、塩化水素(化学式HCl)の水溶液。代表的な酸のひとつで、強い酸性を示す。.

イットリウムと塩酸 · トリウムと塩酸 · 続きを見る »

展延性

アルミニウム合金 (AlMgSi) の引張試験の結果。円錐状に細長く延びて破断しているのは、延性のある金属によく見られる結果である。 延性の低いダクタイル鋳鉄の引張試験の結果 展延性(てんえんせい、英:ductility)とは、固体の物質の力学的特性(塑性)の一種で、素材が破断せずに柔軟に変形する限界を示す。展延性は延性 (ductility) と展性 (malleability) に分けられる。英語の "ductility" は展延性と延性の両方の意味で使われる。 物質科学において、延性は特に物質に引っ張る力を加えた際の変形する能力を指し、針金状に延ばせる能力で表されることが多い。一方展性は圧縮する力を加えた際の変形する能力を指し、鍛造や圧延で薄いシート状に成形できる能力で表されることが多い。そのため展性を可鍛性(かたんせい)とも呼ぶ。 延性と展性は必ずしも正の相関があるとは言えない。例えば金は延性も展性も高いが、鉛は展性のみが高く引っ張る力には弱い。.

イットリウムと展延性 · トリウムと展延性 · 続きを見る »

不動態

不動態(ふどうたい、不働態とも)とは、金属表面に腐食作用に抵抗する酸化被膜が生じた状態のこと。この被膜は溶液や酸にさらされても溶け去ることが無いため、内部の金属を腐食から保護するために用いられる。なお、本来「不働態」が正字であるが、現在は「不動態」と表記する。 酸化力のある酸にさらされた場合や、陽極酸化処理によって生じる。不動態の典型的な被膜の厚みは、例えばステンレスに生じる不動態の場合、数nmである。 すべての金属が不動態となるわけではない。不動態になりやすいのは、アルミニウム、クロム、チタンなどやその合金である。また、これらの金属は弁金属(バルブメタル)と呼ばれる。.

イットリウムと不動態 · トリウムと不動態 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

イットリウムと中性子 · トリウムと中性子 · 続きを見る »

常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

イットリウムと常磁性 · トリウムと常磁性 · 続きを見る »

希土類元素

希土類元素(きどるいげんそ、)又はレアアースは、31鉱種あるレアメタルの中の1鉱種で、スカンジウム Sc、イットリウム Yの2元素と、ランタン La からルテチウム Lu までの15元素(ランタノイド)の計17元素の総称である(元素記号の左下は原子番号)。周期表の位置では、第3族のうちアクチノイドを除く第4周期から第6周期までの元素を包含する。なお、希土類・希土と略しており、かつて稀土類・稀土とも書き、それらは英語名の直訳であり、比較的希な鉱物から得られた酸化物から分離されたことに由来している。.

イットリウムと希土類元素 · トリウムと希土類元素 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

イットリウムと人工放射性元素 · トリウムと人工放射性元素 · 続きを見る »

ネオジム

ネオジム(neodymium、Neodym)は原子番号60の金属元素。元素記号は Nd。希土類元素の一つで、ランタノイドにも属する。 日本語の「ネオジム」はドイツ語の Neodym の字訳である。製品名等で「ネオジウム」「ネオジューム」等の呼称も用いられることがあり、用法の正誤については議論がある。.

イットリウムとネオジム · トリウムとネオジム · 続きを見る »

モナズ石

モナズ石(モナズせき、monazite-(Ce)、モナザイト)は、鉱物(リン酸塩鉱物)の一種。ペグマタイト、花崗岩、片麻岩、砂岩などに含まれる。通常、小さな孤立した結晶として発生する。モナズ石はしばしば砂鉱床で見つかる。インドの鉱床は特にモナズ石に富む。 ふつうのモナズ石は、希土類元素のうちセリウムを最も多く含むので、英名は monazite-(Ce)、化学組成は CePO4 と表す。ネオジムを最も多く含むネオジムモナズ石は、monazite-(Nd)、(Nd,La,Ce)PO4 となる。 実際にはモナズ石は、元素組成によって少なくとも3種類が存在する。.

イットリウムとモナズ石 · トリウムとモナズ石 · 続きを見る »

ランタノイド

ランタノイド (lanthanoid) とは、原子番号57から71、すなわちランタンからルテチウムまでの15の元素の総称Shriver & Atkins (2001), p.12。。 「ランタン (lanthan)」+「-もどき (-oid)」という呼称からも分かるように、各々の性質がよく似ていることで知られる。 スカンジウム・イットリウムと共に希土類元素に分類される。周期表においてはアクチノイドとともに本体の表の下に脚注のような形で配置されるのが一般的である。.

イットリウムとランタノイド · トリウムとランタノイド · 続きを見る »

ランタン

ランタン(Lanthan 、lanthanum )は、原子番号57の元素。元素記号は La。希土類元素の一つ。4f軌道を占有する電子は0個であるが、ランタノイド系列の最初の元素とされる。白色の金属で、常温、常圧で安定な結晶構造は、複六方最密充填構造(ABACスタッキング)。比重は6.17で、融点は918 、沸点は3420 。 空気中で表面が酸化され、高温では酸化ランタン(III) La2O3 となる。ハロゲン元素と反応し、水にはゆっくりと溶ける。酸には易溶。安定な原子価は+3価。 モナズ石(モナザイト)に含まれる。.

イットリウムとランタン · トリウムとランタン · 続きを見る »

フッ化物

フッ化物(フッかぶつ、弗化物、fluoride)とはフッ素とほかの元素あるいは原子団とから構成される化合物である。フッ素は最大の電気陰性度を持つ元素であるため、HF3 などごく一部の例外を除き、化合物の中では酸化数が -1 とされる。イオン性あるいは分子性のフッ化物が知られているが分子性フッ化物は液体のものが多く、常温で気体や固体のものも少数見られる。イオン性のフッ化物でも一般に融点の低いものが多い長倉三郎ら(編)、「フッ化物」、『岩波理化学辞典』、第5版 CD-ROM版、岩波書店、1998年。。 イオン性のフッ化物の構成要素となる、フッ素原子が電子を1個得て単独でイオン化した陰イオン (F-) はフッ化物イオンと呼ばれる。フッ素イオンと言う名称は、現在推奨されていない。.

イットリウムとフッ化物 · トリウムとフッ化物 · 続きを見る »

フッ化水素酸

フッ化水素酸(フッかすいそさん、Hydrofluoric acid)は、フッ化水素の水溶液である。俗にフッ酸と呼ばれ、工業的に重要であるが、触れると激しく体を腐食する危険な毒物としても知られる。.

イットリウムとフッ化水素酸 · トリウムとフッ化水素酸 · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

イットリウムとベータ崩壊 · トリウムとベータ崩壊 · 続きを見る »

オックスフォード大学出版局

Walton Streetのオックスフォード大学出版局 オックスフォード大学出版局(オックスフォードだいがくしゅっぱんきょく、英語:Oxford University Press、略称OUP)は、イングランドのオックスフォード大学の出版局を兼ねる出版社である。OUPは世界最大の大学出版局であり、アメリカの全ての大学出版局とケンブリッジ大学出版局の合計以上の規模を誇る。OUPはケンブリッジ大学出版局とともに、イギリスの特権出版社(en:privileged presses イギリスで祈祷書・欽定訳聖書の出版権を持つ出版社)の一つである。インド・パキスタン・カナダ・オーストラリア・ニュージーランド・マレーシア・シンガポール・ナイジェリア・南アフリカ共和国など、世界中に支部を持っている。OUP USAは1896年ごろに設立され、1987年に法人化された非公開有限(en:private limited company)の子会社で、OUP初の国際ベンチャーである。1905年設立のカナダ支部は2番目。OUP全体は選挙によって選ばれた、出版局代表団(Delegates of the Press)と呼ばれる代表者たちによって運営される。出版局代表団はすべてオックスフォード大学のメンバーである。現在、OUPが用いる出版社名は二つある。第一に参考書・教育書・学術書などの大部分はOxford University Press(オックスフォード大学出版局)名義、「名声のある(prestige)」学術書はClarendon Press(クラレンドンプレス)名義である。主要な支部のほとんどは、OUP本部の書籍の発行・販売だけでなく、その地域の出版社として機能している。 OUPは1972年にアメリカの法人税を控除され、1978年にイギリスでも控除された。OUPは、慈善事業団体としてほとんどの国で所得税・法人税を控除されているが、出版物に対し、売上税その他の商取引に関する税金を払う場合もある。OUPは現在、黒字の30%(毎年最低12万ポンドの確約つき)をオックスフォード大学に送っている。OUPは出版数として世界最大の大学出版局で、毎年4500冊以上の新刊を出版し、従業員数は約4000人。OUPはオックスフォード英語辞典、、Oxford World's Classics、Oxford Dictionary of National Biographyなどの参考書・専門書・学術書を出版している。これらの重要書籍の多くが、Oxford Reference Onlineというパッケージとして電子公開されており、イギリスの公立図書館の利用者カードの所有者には無料で提供されている。 哲学者のアンドリュー・マルコムが、著書Making Namesに関する1985年の出版契約不履行について提訴した裁判で、1990年OUPはイギリス控訴院にて敗訴した。1998年、OUPは人気の高かったOxford Poetsシリーズを打ち切った。2001年、OUPはイギリスの法律系出版社Blackstoneを取得した。2003年、OUPはMacmillan PublishersからGrove Dictionary of Music and Musicians(グローヴ音楽事典)・Grove Dictionary of Art(グローヴ芸術事典)を取得した。2006年、OUPはイギリスの出版社Richmond Law & Taxを取得した。 OUPで出版された本のISBNは0-19で始まる。つまりOUPは数少ないISBN識別番号2桁の出版社のひとつなのである。(ISBN番号は13桁と決まっており、桁が少ないほど多くの図書を登録できるようになっている。).

イットリウムとオックスフォード大学出版局 · オックスフォード大学出版局とトリウム · 続きを見る »

セリウム

リウム(cerium)は原子番号58の元素で、元素記号は Ce。軟らかく、銀白色の、延性に富む金属で、空気中で容易に酸化される。セリウムの名は準惑星ケレスに因んでいる。セリウムは希土類元素として最も豊富に存在して、地殻中に質量パーセント濃度で0.046%含んでいる。さまざまな鉱物中で見つかり、最も重要なのはモナザイトとバストネサイトである。セリウムの商業的な用途はたくさんある。触媒、排出物を還元するための燃料への添加剤、ガラス、エナメルの着色剤などがある。酸化物はガラス研磨剤、スクリーンの蛍光体、蛍光灯などで重要な成分である。.

イットリウムとセリウム · セリウムとトリウム · 続きを見る »

タングステン

タングステンまたはウォルフラム(Wolfram 、wolframium、tungsten )は原子番号74の元素。元素記号は W。金属元素の一つ。 原子量は183.84である。銀灰色の非常に硬く重い金属で、クロム族元素に属する。化学的に安定で、その結晶は体心立方構造 (BCC) を持つ。融点は で、沸点は 。比重は19.3。希少金属の一つである。 ため、鍛造、伸線、または押出により加工できる。一般的なタングステン製品は焼結で生産される。 タングステンはすべての金属中で融点が最も高く(3422°C)、1650°C以上の領域で蒸気圧が最も低く、引っ張り強度は最強である。炭素はタングステンより高温でも固体であるが、大気圧では昇華してしまい融点はないため、タングステンが最も融点の高い元素となる。また、タングステンは最も熱膨張係数が小さい金属でもある。高い融点と引っ張り強度、小さい熱膨張係数は、タングステン結晶において5d軌道の電子が強い共有結合を形成していることによってもたらされている。 -->.

イットリウムとタングステン · タングステンとトリウム · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

イットリウムと元素 · トリウムと元素 · 続きを見る »

硝酸

硝酸(しょうさん、nitric acid)は窒素のオキソ酸で、化学式 HNO3 で表される。代表的な強酸の1つで、様々な金属と反応して塩を形成する。有機化合物のニトロ化に用いられる。硝酸は消防法第2条第7項及び別表第一第6類3号により危険物第6類に指定され、硝酸を 10 % 以上含有する溶液は医薬用外劇物にも指定されている。 濃硝酸に二酸化窒素、四酸化二窒素を溶かしたものは発煙硝酸、赤煙硝酸と呼ばれ、さらに強力な酸化力を持つ。その強力な酸化力を利用してロケットの酸化剤や推進剤として用いられる。.

イットリウムと硝酸 · トリウムと硝酸 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

イットリウムと第17族元素 · トリウムと第17族元素 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

イットリウムと融点 · トリウムと融点 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

イットリウムと触媒 · トリウムと触媒 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

イットリウムと超新星 · トリウムと超新星 · 続きを見る »

自然発火

自然発火(しぜんはっか)とは、人為的に火を付けることなく出火する現象のこと。火事の原因として少なくない要因として挙げられている。発火理論として自然発火が起きる条件はFK理論で扱われる。人が取り扱う発火性物質については消防法で厳密に規定されている。.

イットリウムと自然発火 · トリウムと自然発火 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

イットリウムと電極 · トリウムと電極 · 続きを見る »

核異性体

核異性体(かくいせいたい、Nuclear isomer)とは、原子核がある程度の時間、励起した状態を保っている原子核のことである培風館『物理学辞典』p 82丸善『物理学大辞典』p 175-176丸善『物理学大辞典』p 181。 ここで言う励起とは、通常よく言われる電子が受ける電磁気力に基づく原子が励起した状態のことではなく、原子核内の陽子や中性子の間に働く強い力(核力)に基づく原子核のエネルギー状態を意味する。 また原子核レベルのことなので、ある程度の時間というのは通常、10-6(100万分の1)秒から長くて秒単位である。ただし、まれには秒単位をはるかに超えて長いものもある。 核異性体は、あるいは異性核、核異性、準安定核とも言う。.

イットリウムと核異性体 · トリウムと核異性体 · 続きを見る »

1828年

記載なし。

1828年とイットリウム · 1828年とトリウム · 続きを見る »

上記のリストは以下の質問に答えます

イットリウムとトリウムの間の比較

トリウムが105を有しているイットリウムは、206の関係を有しています。 彼らは一般的な31で持っているように、ジャカード指数は9.97%です = 31 / (206 + 105)。

参考文献

この記事では、イットリウムとトリウムとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »