アーベル群と斜体 (数学)間の類似点
アーベル群と斜体 (数学)は(ユニオンペディアに)共通で13ものを持っています: 加法単位元、加法群、単位元、実数、巡回群、交換法則、二項演算、ベクトル空間、群 (数学)、結合法則、環 (数学)、複素数、逆元。
加法単位元
数学、とくに抽象代数学における加法単位元(かほうたんいげん、additive identity)は、加法を演算として備える集合において、ほかのどのような元 x に加えても x が変化しない特別の元である。最もよく馴染みのある加法単位元のひとつとしては初等数学で扱う数の 0 が挙げられるが、加法単位元の概念はもっと多くの、加法が定義される数学的構造(たとえば加法群や環)に対して定義されるものである。環などにおける加法単位元はしばしば零元と呼ばれる。
加法群
加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。加法群は通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数全体、ベクトル空間、環の加法群。これは環と体で可逆元全体からなる乗法群を加法群と区別するために特に有用である。
アーベル群と加法群 · 加法群と斜体 (数学) ·
単位元
数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。
アーベル群と単位元 · 単位元と斜体 (数学) ·
実数
数学における実数(じっすう、nombre réel, reelle Zahl, real number)とは、連続な量を表すために有理数を拡張した数の体系である。 実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。
アーベル群と実数 · 実数と斜体 (数学) ·
巡回群
群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元(generator)あるいは原始元(primitive)と呼ばれる。
アーベル群と巡回群 · 巡回群と斜体 (数学) ·
交換法則
初等代数学における交換法則(こうかんほうそく、commutative law; 可換則、交換律)は、与えられた演算の二つの引数を互いに入れ替えても結果が変わらないことを述べる。また交換法則を満足する演算は可換性(commutative property; 交換性質)を持つと言う。例えば自然数に関する足し算や掛け算は交換法則を満たしている。
二項演算
数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。
ベクトル空間
数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトル(vector)と呼ばれる元からなる集まりの成す数学的構造である。 ベクトルにはが定義され、またスカラーと呼ばれる数との乗法(、スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の可換体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの加法とスカラー乗法の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(#定義節を参照)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる空間ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。
アーベル群とベクトル空間 · ベクトル空間と斜体 (数学) ·
群 (数学)
数学における群(ぐん、group)とは、ある二項演算とその対象となる集合とを合わせて見たときに結合性を伴い単位元と逆元を備えるものをいう。数学において最も基本的と見なされる代数的構造の一つであり、数学や物理学全般において、さまざまな構成に対する基礎的な枠組みを与えている。群はそれ自体が研究対象であり、その領域は群論と呼ばれる。
アーベル群と群 (数学) · 斜体 (数学)と群 (数学) ·
結合法則
数学における結合性(けつごうせい、quote,associativity)は、一部の二項演算がもつ性質である。演算が結合的であるための必要十分条件を結合法則(けつごうほうそく、associative law; 結合律、結合則)という。命題論理において、結合則(結合規則)はにおける式に対するなのひとつに挙げられる。 同一式にて同じ結合的演算が複数回現れる場合、それらの演算を施す順番は、被演算子の順序を変えない限り、結果に影響しない。つまり、(必要ならば中置記法と括弧を使った式に書き換えて)括弧の位置を入れ替えても、式の値は変わらない。例えば、。
環 (数学)
数学における環(かん、ring)とは、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系のことである。 最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。したがって、台集合は加法の下「加法群」と呼ばれるアーベル群を成し、乗法の下「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。
アーベル群と環 (数学) · 斜体 (数学)と環 (数学) ·
複素数
2。
アーベル群と複素数 · 斜体 (数学)と複素数 ·
逆元
逆元 (ぎゃくげん、)とは、数学(とくに抽象代数学)において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。
アーベル群と逆元 · 斜体 (数学)と逆元 ·
上記のリストは以下の質問に答えます
- 何アーベル群と斜体 (数学)ことは共通しています
- 何がアーベル群と斜体 (数学)間の類似点があります
アーベル群と斜体 (数学)の間の比較
斜体 (数学)が55を有しているアーベル群は、60の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は11.30%です = 13 / (60 + 55)。
参考文献
この記事では、アーベル群と斜体 (数学)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください: