アモキシシリンと黄色ブドウ球菌間の類似点
アモキシシリンと黄色ブドウ球菌は(ユニオンペディアに)共通で5ものを持っています: ペニシリン、グラム陽性菌、サルモネラ、細菌、腸。
ペニシリン
ペニシリン(penicillin)は、1928年にイギリス・スコットランドの細菌学者・アレクサンダー・フレミングによって発見された抗生物質である。抗菌剤の分類上ではβ-ラクタム系抗生物質に分類される。フレミングはこの功績によりノーベル生理学・医学賞を受賞した。 発見後、医療用として実用化されるまでには10年以上の歳月を要したが、1942年にベンジルペニシリン(ペニシリンG、PCG)が単離されて実用化され、第二次世界大戦中に多くの負傷兵や戦傷者を感染症から救った。以降、種々の誘導体(ペニシリン系抗生物質)が開発され、医療現場に提供されてきた。 1980年代以降、日本国内においては主力抗菌剤の座をセファロスポリン系抗生物質やニューキノロンに明け渡した感があるが、ペニシリンの発見はこれらの抗菌剤が開発される礎を築いたものであり、しばしば「20世紀における偉大な発見」の中でも特筆すべき1つとして数え上げられる。
アモキシシリンとペニシリン · ペニシリンと黄色ブドウ球菌 ·
グラム陽性菌
グラム陽性菌(グラムようせいきん、)とは、グラム染色により紺青色あるいは紫色に染色される細菌の総称。これに対して赤色あるいは桃色を呈すものをグラム陰性菌と呼ぶ。 大半は外膜を持たないMD細菌(単膜細菌)であるフィルミクテス門と放線菌、一部のクロロフレクスス門であるが、DD細菌(二重膜細菌)であるデイノコックス・テルムス門の一部も例外的にグラム陽性で、逆にMD細菌であるクロロフレクスス門の一部やテネリクテス門はグラム陰性である。 かつてグラム陽性の真正細菌は、フィルミクテス門Firmicutesに一括してまとめられた時期がある。命名はグラム陽性菌の厚い細胞壁にちなんでおり、ラテン語のFirmisフィルミス(強固な)とcutisクティス(皮膚)の合成語であった。ここには、現在のフィルミクテス門に含まれる低GCグラム陽性細菌の他に、現在は別の門として扱われる放線菌(高GCグラム陽性細菌)やデイノコックスなども含まれていた。
アモキシシリンとグラム陽性菌 · グラム陽性菌と黄色ブドウ球菌 ·
サルモネラ
サルモネラ は、グラム陰性 通性嫌気性桿菌の腸内細菌科の一属(サルモネラ属)に属する細菌。主に動物の消化管に生息する腸内細菌の一種であり、その一部はヒトや動物に感染して病原性を示す。ヒトに対して病原性を持つサルモネラ属の細菌は、三類感染症に指定されている腸チフスやパラチフスを起こすもの(チフス菌 とパラチフス菌 )と、感染型食中毒を起こすもの(食中毒性サルモネラ:ネズミチフス菌 や腸炎菌 など)とに大別される。食品衛生の分野では、後者にあたる食中毒の原因となるサルモネラを特にサルモネラ属菌と呼ぶが、一般には、これらを指して狭義にサルモネラあるいはサルモネラ菌と呼ぶこともある。細胞内寄生性細菌であり、チフス菌やパラチフス菌は主にマクロファージに感染して菌血症を、それ以外の食中毒性サルモネラは腸管上皮細胞に感染して胃腸炎を起こす性質を持ち、この細胞内感染がサルモネラの病原性に関与している。
アモキシシリンとサルモネラ · サルモネラと黄色ブドウ球菌 ·
細菌
細菌(さいきん、真正細菌、bacterium、複数形 bacteria、バクテリア)とは、古細菌、真核生物とともに全生物界を三分する、生物の主要な系統(ドメイン)の一つである。語源はギリシャ語の「小さな杖」(βακτήριον)に由来する。細菌は大腸菌、枯草菌、藍色細菌(シアノバクテリア)など様々な系統を含む生物群である。通常1-10 µmほどの微生物であり、球菌や桿菌、螺旋菌など様々な形状が知られている。真核生物と比較した場合、非常に単純な構造を持つ一方で、はるかに多様な代謝系や栄養要求性を示す。細菌を研究する科学分野は微生物学(または細菌学)と呼ばれる。 細菌と古細菌は合わせて原核生物と呼ばれる。核を持たないという点で古細菌と類似するが、古細菌と細菌の分岐は古い。古細菌と比較して、遺伝システムやタンパク質合成系の一部に異なる機構を採用し、ペプチドグリカンより構成される細胞壁や、エステル型脂質より構成される細胞膜を持っているという点からも細菌は古細菌と区別される。1977年までは古細菌は細菌に含まれると考えられていたが、現在では両者はドメインレベルで別の生物とされる。 細菌の生息環境は非常に広く、例えば土壌、淡水・海水、酸性温泉、放射性廃棄物、そして地殻地下生物圏といった極限環境に至るまで、地球上のあらゆる環境(生物圏)に存在している。地球上の全細胞数は5×1030に及ぶと推定されており、その生物量は膨大である。また、その代謝系は非常に多様であり、細菌は光合成や窒素固定、有機物の分解過程など、物質循環において非常に重要な位置を占めている。熱水噴出孔や冷水湧出帯などの環境では、硫化水素やメタンなどの海水中に溶解した化学化合物が細菌によりエネルギーに変換され、近隣環境に生息する様々な生物が必要とする栄養素を供給している。植物や動物と共生・寄生の関係になる細菌系統も多く知られている。地球上に存在する細菌種の大半は、未だ十分に研究がされておらず、その生態や物質循環における役割が不明である。研究報告がなされた細菌種は全体の約2%に過ぎないとも推定され、実験室での培養系が確立していないものが大半である。 腸内細菌や発酵細菌、病原菌など、ヒト(人間)をはじめとする他の生物との関わりも深い。通常、ヒトなどの大型生物は、何百万もの常在菌と共存している。例えば腸内細菌群は、多くの動物において食物の消化過程に欠かすことのできない要素である。ヒト共生細菌の大半は無害であるか、免疫系の保護効果によって無害になっている。多くの細菌、特に腸内細菌は宿主となる動物にとって有益な存在である。共生細菌に限らず、細菌の大半は病気などを引き起こす存在とは考えられていない。 しかし極一部のものは病原細菌として、ヒトや動物の感染症の原因になる。例えばコレラ、梅毒、炭疽菌、ハンセン病、腺ペスト、呼吸器感染症など病原性を持ち感染症を引き起こす細菌が知られている。このような感染症を治療するために、ストレプトマイシンやクロラムフェニコール、テトラサイクリンなど、様々な細菌由来の抗生物質が探索され発見されてきた。抗生物質は細菌感染症の治療や農業で広く使用されている一方、病原性細菌の抗生物質耐性の獲得が社会的な問題となっている。 また、下水処理や流出油の分解、鉱業における金・パラジウム・銅等の金属回収などにも、細菌は広く応用利用されている。食品関係においては、微生物学が展開するはるか以前から、人類はチーズ、納豆、ヨーグルトなどの発酵過程において微生物を利用している。 細菌は対立遺伝子を持たず、遺伝子型がそのまま表現型をとり、世代時間が短く変異体が得られやすく、さらに形質転換系の確立によって遺伝子操作が容易である。このような理由から、近年の分子生物学を中心とした生物学は、細菌を中心に研究が発展してきた。特に大腸菌などは、分子生物学の有用なツールとして現在でも頻繁に使用されている。
アモキシシリンと細菌 · 細菌と黄色ブドウ球菌 ·
腸
腸(ちょう、intestines)は、食物が胃で溶かされた後、その中の栄養や水分を吸収する器官。末端は肛門であり、消化された食物は便となり、排便により体外へと排出される。腸の構造は動物によって異なり、摂取する食物による違いが大きい。
上記のリストは以下の質問に答えます
- 何アモキシシリンと黄色ブドウ球菌ことは共通しています
- 何がアモキシシリンと黄色ブドウ球菌間の類似点があります
アモキシシリンと黄色ブドウ球菌の間の比較
黄色ブドウ球菌が85を有しているアモキシシリンは、37の関係を有しています。 彼らは一般的な5で持っているように、ジャカード指数は4.10%です = 5 / (37 + 85)。
参考文献
この記事では、アモキシシリンと黄色ブドウ球菌との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください: