ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

アボガドロの法則と化学

ショートカット: 違い類似点ジャカード類似性係数参考文献

アボガドロの法則と化学の違い

アボガドロの法則 vs. 化学

アボガドロの法則(アボガドロのほうそく、英語:Avogadro's law)とは、同一圧力、同一温度、同一体積のすべての種類の気体には同じ数の分子が含まれるという法則である。 1811年にアメデオ・アボガドロがゲイ=リュサックの気体反応の法則とジョン・ドルトンの原子説の矛盾を説明するために仮説として提案した。 少し遅れて1813年にアンドレ=マリ・アンペールも独立に同様の仮説を提案したことから、アボガドロ-アンペールの法則ともいう。 また特に分子という概念を提案した点に着目して分子説(ぶんしせつ)とも呼ぶ。 元素、原子、分子の3つの概念を区別し、またそれらに対応する化学当量、原子量、分子量の違いを区別する上で鍵となる仮説である。 アボガドロの仮説は提案後半世紀近くの間、一部の化学者以外にはほとんど忘れ去られていた。 そのため、化学当量と原子量、分子量の区別があいまいになり、化学者によって用いる原子量の値が異なるという事態に陥っていた。 1860年のにおいてスタニズラオ・カニッツァーロによりアボガドロの仮説についての解説が行なわれ、これを聞いた多くの化学者が仮説を受け入れ原子量についての混乱は徐々に解消されていった。 その後、問題になったのはアボガドロの提案した分子という存在が実在するかどうかであった。 分子の実在を主張する側からは気体分子運動論が提案され、気体の状態方程式などが説明されるに至った。 しかし一方で実証主義の立場から未だ観測できていない分子はあくまで理論の説明に都合の良い仮説と主張する物理学者、化学者も多かった。 この問題は最終的には1905年のアルベルト・アインシュタインによるブラウン運動の理論の提案とジャン・ペランによるその理論の実証により間接的に分子の実在が証明されることによって解決した。 現在では分子の実在が確認されたことから、アボガドロの仮説はアボガドロの法則と呼ばれており、分子量と同じグラム数の気体が含む分子の数を表す物理定数を彼の名を冠してアボガドロ定数と呼んでいる。. 化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

アボガドロの法則と化学間の類似点

アボガドロの法則と化学は(ユニオンペディアに)共通で24ものを持っています: 原子原子論単体化学反応化学式化学当量ニュートン力学分子分子量周期律エネルギーエントロピーギルバート・ルイスコロイドジョン・ドルトン共有結合元素無機化合物熱力学量子化学英語電気化学的二元論気体溶液

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

アボガドロの法則と原子 · 化学と原子 · 続きを見る »

原子論

原子論(げんしろん、atomism)とは、“すべての物質は非常に小さな、分割不可能な粒子(Atom、原子)で構成されている”、とする仮説、理論、主義などのこと。.

アボガドロの法則と原子論 · 化学と原子論 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

アボガドロの法則と単体 · 化学と単体 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

アボガドロの法則と化学反応 · 化学と化学反応 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

アボガドロの法則と化学式 · 化学と化学式 · 続きを見る »

化学当量

化学当量(かがくとうりょう、chemical equivalent)は化学反応における量的な比例関係を表す概念である。化学当量以外にも当量は存在するが、化学の領域において単に当量といえば化学当量を表す。代表的なものとして質量の比を表すグラム当量と物質量の比を表すモル当量とがある。当量を表す単位としては、Eqを用いる。.

アボガドロの法則と化学当量 · 化学と化学当量 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

アボガドロの法則とニュートン力学 · ニュートン力学と化学 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

アボガドロの法則と分子 · 分子と化学 · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

アボガドロの法則と分子量 · 分子量と化学 · 続きを見る »

周期律

周期律(しゅうきりつ、periodic law)は、元素を原子番号順に配列すると元素の物理的、化学的性質が一定の周期性で変化することである。これにより元素がSブロック元素、Pブロック元素、Dブロック元素、Fブロック元素、Gブロック元素…に分類される。また、周期律に従い元素を配列した表が周期表である。.

アボガドロの法則と周期律 · 化学と周期律 · 続きを見る »

エネルギー

ネルギー(、)とは、.

アボガドロの法則とエネルギー · エネルギーと化学 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

アボガドロの法則とエントロピー · エントロピーと化学 · 続きを見る »

ギルバート・ルイス

ルバート・ニュートン・ルイス(Gilbert Newton Lewis, 1875年10月23日 - 1946年3月24日)は、アメリカ合衆国の物理化学者。共有結合の発見(ルイスの電子式)、重水の単離、化学熱力学を数学的に厳密で普通の化学者にも馴染める形で再構築、酸と塩基の定義、光化学実験などで知られている。1926年、放射エネルギーの最小単位を "photon"(光子)と名付けた。化学の専門家のフラタニティ Alpha Chi Sigma のメンバーだった。長く教授を務めたが、中でもカリフォルニア大学バークレー校に最も長く在籍した。.

アボガドロの法則とギルバート・ルイス · ギルバート・ルイスと化学 · 続きを見る »

コロイド

イド(colloid)またはコロイド分散体(colloidal dispersion)は、一方が微小な液滴あるいは微粒子を形成し(分散相)、他方に分散した2組の相から構成された物質状態である。膠質(こうしつ)と呼ぶこともある。.

アボガドロの法則とコロイド · コロイドと化学 · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

アボガドロの法則とジョン・ドルトン · ジョン・ドルトンと化学 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

アボガドロの法則と共有結合 · 共有結合と化学 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

アボガドロの法則と元素 · 元素と化学 · 続きを見る »

無機化合物

無機化合物(むきかごうぶつ、inorganic compound)は、有機化合物以外の化合物であり、具体的には単純な一部の炭素化合物(下に示す)と、炭素以外の元素で構成される化合物である。“無機”には「生命力を有さない」と言う意味があり、“機”には「生活機能」と言う意味がある。 炭素化合物のうち無機化合物に分類されるものには、グラファイトやダイヤモンドなど炭素の同素体、一酸化炭素や二酸化炭素、二硫化炭素など陰性の元素と作る化合物、あるいは炭酸カルシウムなどの金属炭酸塩、青酸と金属青酸塩、金属シアン酸塩、金属チオシアン酸塩、金属炭化物などの塩が挙げられる。 無機化合物の化学的性質は、元素の価電子(最外殻電子)の数に応じて性質が多彩に変化する。特に典型元素は周期表の族番号と周期にそれぞれ特有の性質の関連が知られている。 典型元素.

アボガドロの法則と無機化合物 · 化学と無機化合物 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

アボガドロの法則と熱力学 · 化学と熱力学 · 続きを見る »

量子化学

量子化学(りょうしかがく、quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。.

アボガドロの法則と量子化学 · 化学と量子化学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

アボガドロの法則と英語 · 化学と英語 · 続きを見る »

電気化学的二元論

電気化学的二元論(でんきかがくてきにげんろん、Electrochemical dualism)とは、すべての物質が正の電気を持つ部分と負の電気を持つ部分が結びついてできているという化学結合に関する理論のことである。 ハンフリー・デービーがこの説を最初に唱え、イェンス・ベルセリウスがそれを一大理論として集大成させた。 現在でいうイオン結合の考え方の嚆矢といえる理論である。 理論が提唱されていた当時に研究されていた物質の多くは単純な無機化合物であり、この考え方をうまく適用することができた。 しかし理論提唱後の有機化学の発展により、多くの有機化合物とその化学反応が知られるようになると、この考え方と矛盾するような現象が多く発見されるようになった。 最終的にはアンドレ・デュマとその弟子たちによる電気的性質を考慮しない一元論によって淘汰された。一元論は最終的には原子価説として確立された。.

アボガドロの法則と電気化学的二元論 · 化学と電気化学的二元論 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

アボガドロの法則と気体 · 化学と気体 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

アボガドロの法則と溶液 · 化学と溶液 · 続きを見る »

上記のリストは以下の質問に答えます

アボガドロの法則と化学の間の比較

化学が327を有しているアボガドロの法則は、111の関係を有しています。 彼らは一般的な24で持っているように、ジャカード指数は5.48%です = 24 / (111 + 327)。

参考文献

この記事では、アボガドロの法則と化学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »