ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アボガドロの法則とシャルルの法則

ショートカット: 違い類似点ジャカード類似性係数参考文献

アボガドロの法則とシャルルの法則の違い

アボガドロの法則 vs. シャルルの法則

アボガドロの法則(アボガドロのほうそく、英語:Avogadro's law)とは、同一圧力、同一温度、同一体積のすべての種類の気体には同じ数の分子が含まれるという法則である。 1811年にアメデオ・アボガドロがゲイ=リュサックの気体反応の法則とジョン・ドルトンの原子説の矛盾を説明するために仮説として提案した。 少し遅れて1813年にアンドレ=マリ・アンペールも独立に同様の仮説を提案したことから、アボガドロ-アンペールの法則ともいう。 また特に分子という概念を提案した点に着目して分子説(ぶんしせつ)とも呼ぶ。 元素、原子、分子の3つの概念を区別し、またそれらに対応する化学当量、原子量、分子量の違いを区別する上で鍵となる仮説である。 アボガドロの仮説は提案後半世紀近くの間、一部の化学者以外にはほとんど忘れ去られていた。 そのため、化学当量と原子量、分子量の区別があいまいになり、化学者によって用いる原子量の値が異なるという事態に陥っていた。 1860年のにおいてスタニズラオ・カニッツァーロによりアボガドロの仮説についての解説が行なわれ、これを聞いた多くの化学者が仮説を受け入れ原子量についての混乱は徐々に解消されていった。 その後、問題になったのはアボガドロの提案した分子という存在が実在するかどうかであった。 分子の実在を主張する側からは気体分子運動論が提案され、気体の状態方程式などが説明されるに至った。 しかし一方で実証主義の立場から未だ観測できていない分子はあくまで理論の説明に都合の良い仮説と主張する物理学者、化学者も多かった。 この問題は最終的には1905年のアルベルト・アインシュタインによるブラウン運動の理論の提案とジャン・ペランによるその理論の実証により間接的に分子の実在が証明されることによって解決した。 現在では分子の実在が確認されたことから、アボガドロの仮説はアボガドロの法則と呼ばれており、分子量と同じグラム数の気体が含む分子の数を表す物理定数を彼の名を冠してアボガドロ定数と呼んでいる。. ャルルの法則(Charles's lawアトキンス『物理化学 上』 p.19)とは、一定の圧力の下で、気体の体積の温度変化に対する依存性を示した法則である。シャールの法則ともいう。1787年にジャック・シャルルが発見し、1802年にジョセフ・ルイ・ゲイ=リュサックによって初めて発表された。この法則は理想気体に対して成り立つ近似法則であり、実在気体ではずれが生じる。この法則から絶対零度の存在と、普遍的な理想気体温度の存在が見いだされる。 実在気体は厳密にはシャルルの法則を満たさないが、気体が比較的低圧・高温の範囲にある場合にはこの法則の式は非常によい近似式となっている。逆に高圧・低温である場合には気体分子同士に働く分子間力や分子自体の大きさの影響が無視できなくなり、計算される気体体積と若干の誤差を生じる場合が多いので注意すべきである。.

アボガドロの法則とシャルルの法則間の類似点

アボガドロの法則とシャルルの法則は(ユニオンペディアに)共通で6ものを持っています: ボイルの法則ボイル=シャルルの法則分子ジョセフ・ルイ・ゲイ=リュサック理想気体気体

ボイルの法則

ボイルの法則(Boyle's lawアトキンス『物理科学』 pp.18-19)とは、一定の温度の下での気体の体積が圧力に逆比例することを主張する法則である。1662年にロバート・ボイルにより示された。 この法則は、充分に圧力が低い領域において成り立つ近似法則である。 温度 、圧力 の平衡状態にある理想気体の体積 は あるいは と表される。一定の温度の下では体積と圧力の積が一定となる。 すなわち、温度が同一な二つの状態1、2について が成り立つ。 理想気体に対しては全ての圧力の領域で逆比例関係が成り立つが、実在気体では圧力が高い領域ではこの関係から外れる。 しかし、充分に圧力が低い領域において近似的に成り立つ。これは極限を用いて と表される。 実在気体におけるボイルの法則からのずれを圧力 の冪級数で と書いたとき、一次の補正項が となる温度はボイル温度と呼ばれる。 ボイル温度においては、より高い圧力の領域までボイルの法則が適用できる。 理想気体ではその分子自身の大きさや分子間力がないものとして考えているが、実在気体ではそれらの影響が完全には無視できないからである。またボイルの法則では、気体は温度一定で圧力を上げればいくらでも体積が小さくなることを示しているが、実際にはそのようなことはありえない。実際の気体ではある程度の圧力を超えると気体は凝縮あるいは昇華することで、液体や固体になってしまい、もはや気体の性質を持たないからである。.

アボガドロの法則とボイルの法則 · シャルルの法則とボイルの法則 · 続きを見る »

ボイル=シャルルの法則

ボイル=シャルルの法則(ボイルシャルルのほうそく、combined gas law)は、理想気体の体積と圧力、温度に関係する法則。シャルルの法則、ボイルの法則、ゲイ=リュサックの法則を組み合わせたものである。この法則の公式的な発見者はおらず、すでに発見されていた法則を融合させたものである。これらの法則は、気体の圧力、体積、絶対温度のうち任意の2変数が、その他の変数を定数として置いた場合、互いに比例あるいは反比例することを示している。ボイル=シャールの法則ともいう。 シャルルの法則は、圧力一定の条件下では体積と絶対温度が比例することを示すものである。ボイルの法則は、温度一定の条件下では圧力と体積が反比例することを示している。そして、ゲイ=リュサックの法則は、体積が一定の場合には絶対温度と圧力が比例するというものである。 ボイル=シャルルの法則はこれらの変数の相互依存関係を簡潔に示している。一言でいえば、 これを変形して、状態量を全て左辺に移すと、 ここで、 である。 従って、この式の左辺は気体の状態に依存しない定数となる。 2つの異なる環境にある同じ物質を比較した場合、この法則は以下のように書ける。 アボガドロの法則をボイル=シャルルの法則に導入することにより、理想気体の状態方程式を導くことが可能となり、さらには拡張されて「ボイル=シャルルの法則」そのものとされた。 ここで、n.

アボガドロの法則とボイル=シャルルの法則 · シャルルの法則とボイル=シャルルの法則 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

アボガドロの法則と分子 · シャルルの法則と分子 · 続きを見る »

ジョセフ・ルイ・ゲイ=リュサック

ョセフ・ルイ・ゲイ=リュサック(ゲーリュサックなどとも、Joseph Louis Gay-Lussac、1778年12月6日 - 1850年5月9日)は、フランスの化学者 、物理学者である。気体の体積と温度の関係を示すシャルルの法則の発見者の一人である。アルコールと水の混合についても研究し、アルコール度数のことを「ゲイ=リュサック度数」と呼ぶ国も多い。弟子に有機化学の確立に貢献したユストゥス・フォン・リービッヒがいる。 なお、フランス語でのJoseph Louis Gay-Lussacの発音を日本語に音写すれば、「ジョゼフ・ルイ・ゲ=リュサック」が原音に最も近いといえるだろう。.

アボガドロの法則とジョセフ・ルイ・ゲイ=リュサック · シャルルの法則とジョセフ・ルイ・ゲイ=リュサック · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

アボガドロの法則と理想気体 · シャルルの法則と理想気体 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

アボガドロの法則と気体 · シャルルの法則と気体 · 続きを見る »

上記のリストは以下の質問に答えます

アボガドロの法則とシャルルの法則の間の比較

シャルルの法則が23を有しているアボガドロの法則は、111の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は4.48%です = 6 / (111 + 23)。

参考文献

この記事では、アボガドロの法則とシャルルの法則との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »