ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

SI組立単位とエネルギー

ショートカット: 違い類似点ジャカード類似性係数参考文献

SI組立単位とエネルギーの違い

SI組立単位 vs. エネルギー

SI組立単位(エスアイくみたてたんい、SI derived unit)は、国際単位系 (SI) の基本単位を組み合わせて作ることができる単位である。基本単位の冪乗の乗除だけで作ることができる組立単位は「一貫性のある組立単位」と言い、国際単位系は全ての組立単位が一貫性のある組立単位である、「一貫性のある単位系」である。 ラジアンとステラジアンは、以前は補助単位とされていたが、1995年の国際度量衡総会(CGPM)において、補助単位という区分は廃止すること、この2つの単位は無次元の組立単位として解釈することが決議された。. ネルギー(、)とは、.

SI組立単位とエネルギー間の類似点

SI組立単位とエネルギーは(ユニオンペディアに)共通で14ものを持っています: 力 (物理学)仕事 (物理学)ジュール国際単位系国際度量衡総会磁場磁束密度誘電率電場電荷電束密度電流密度速さ透磁率

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

SI組立単位と力 (物理学) · エネルギーと力 (物理学) · 続きを見る »

仕事 (物理学)

物理学における仕事(しごと、work)とは、物体に加わる力と、物体の変位の内積によって定義される物理量である。エネルギーを定義する物理量であり、物理学における種々の原理・法則に関わっている。 物体に複数の力がかかる場合には、それぞれの力についての仕事を考えることができる。ある物体 A が別の物体 B から力を及ぼされながら物体 A が移動した場合には「物体 A が物体 B から仕事をされた」、または「物体 B が物体 A に仕事をした」のように表現する。ただし、仕事には移動方向の力の成分のみが影響するため、力が物体の移動方向と直交している場合には仕事はゼロであり、「物体 B は物体 A に仕事をしない」のように表現をする。力が移動方向とは逆側に向いている場合は仕事は負になる。これらの事柄は変位と力のベクトルの内積として仕事が定義されることで数学的に表現される。すなわち仕事は正負の符号をとるスカラー量である。 仕事が行われるときはエネルギーの増減が生じる。仕事は正負の符号をとるスカラー量であり、正負の符号は混乱を招きやすいが、物体が正の仕事をした場合は物体のエネルギーが減り、負の仕事をした場合には物体のエネルギーが増える。仕事の他のエネルギーの移動の形態として熱があり、熱力学においては仕事を通じて内部エネルギーなどの熱力学関数が定義され、エネルギー保存則が成り立つように熱が定義される。 作用・反作用の法則により力は相互的であるが、仕事は相互的ではない。物体 B が物体 A に力を及ぼしているとき、物体 B は物体 A から逆向きで同じ大きさの力を及ぼされている。しかし物体 B が物体 A に仕事をするときに、物体 B は物体 A から逆符号の仕事をされているとは限らない。例えば、物体が床などの固定された剛な面の上を移動するとき、床と物体との間の摩擦抗力により、床は物体に仕事をするが、床は移動しないため、物体は床に仕事をしない。.

SI組立単位と仕事 (物理学) · エネルギーと仕事 (物理学) · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

SI組立単位とジュール · エネルギーとジュール · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

SI組立単位と国際単位系 · エネルギーと国際単位系 · 続きを見る »

国際度量衡総会

国際度量衡総会(こくさいどりょうこうそうかい)は、メートル条約に基づき、世界で通用する単位系(国際単位系)を維持するために、加盟国参加によって開催される総会議。この会議は他の2つの機関(国際度量衡委員会(CIPM)及び国際度量衡局(BIPM))の上位機関と位置づけられる。開催は4年(当初は6年)に1度パリで行われる。フランス語の「Conférence générale des poids et mesures」に従い、英語圏においても、CGPMを頭字語とする。 2003年の総会には51の加盟国と新たな10の准加盟国が参加した。2005年現在、准加盟国は17か国になっている。2011年10月に第24回国際度量衡総会が開催され、キログラムの再定義などが焦点となった。 第25回総会は1年前倒しで、2014年11月に開催されたが、キログラムの再定義を含むSIの再定義は、2018年開催予定の第26回総会へ延期されることとなった(新しいSIの定義を参照)。.

SI組立単位と国際度量衡総会 · エネルギーと国際度量衡総会 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

SI組立単位と磁場 · エネルギーと磁場 · 続きを見る »

磁束密度

磁束密度(じそくみつど、)とは、文字通り磁束の単位面積当たりの面密度のことであるが、単に磁場と呼ばれることも多い。磁束密度はベクトル量である。 記号 B で表されることが多い。国際単位系 (SI)ではテスラ (T)、もしくはウェーバ毎平方メートル (Wb/m2)である。.

SI組立単位と磁束密度 · エネルギーと磁束密度 · 続きを見る »

誘電率

誘電率(ゆうでんりつ、permittivity)は物質内で電荷とそれによって与えられる力との関係を示す係数である。電媒定数ともいう。各物質は固有の誘電率をもち、この値は外部から電場を与えたとき物質中の原子(あるいは分子)がどのように応答するか(誘電分極の仕方)によって定まる。.

SI組立単位と誘電率 · エネルギーと誘電率 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

SI組立単位と電場 · エネルギーと電場 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

SI組立単位と電荷 · エネルギーと電荷 · 続きを見る »

電束密度

電束密度(でんそくみつど、)は、電荷の存在によって生じるベクトル場である。 電気変位()とも呼ばれる。電場の強度は電荷に力を及ぼす場であり、電束密度とは由来が全く異なる場であるが、真空においては普遍定数により結び付けられてその違いが現れない。誘電体を考える場合には両者の違いが現れるが、誘電体を真空における電荷の分布であると考えることで、電束密度をあらわに用いる必要はなくなる。SIにおける単位はクーロン毎平方メートル(記号: C m)が用いられる。.

SI組立単位と電束密度 · エネルギーと電束密度 · 続きを見る »

電流密度

電流密度(でんりゅうみつど)は、単位面積に垂直な方向に単位時間に流れる電気量(電荷)のことであり、電気量についての流束である。単位としては A/m² が用いられる。電気導体に電界 E が与えられたときの電流密度 J は、 である。ここに比例定数 σ は電気伝導率 あるいは導電率(conductivity)といい、単位は S/m である。電気伝導率の逆数 ρ.

SI組立単位と電流密度 · エネルギーと電流密度 · 続きを見る »

速さ

物理学の運動学における速さ(はやさ、speed)は、速度ベクトルの大きさを指す用語である。各時刻の位置が特定できるような何らかの'もの'があって、その'もの'が時間とともに移動していく場合に、その(道のりとしての)移動距離が時間的に増していく変化のすばやさ(変化率)を表す量である。速度が一定の場合は、単位時間あたりの移動距離であると考えてよい。.

SI組立単位と速さ · エネルギーと速さ · 続きを見る »

透磁率

透磁率(とうじりつ、magnetic permeability)または導磁率(どうじりつ)は、磁場(磁界)の強さ H と磁束密度 B との間の関係を B.

SI組立単位と透磁率 · エネルギーと透磁率 · 続きを見る »

上記のリストは以下の質問に答えます

SI組立単位とエネルギーの間の比較

エネルギーが156を有しているSI組立単位は、109の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は5.28%です = 14 / (109 + 156)。

参考文献

この記事では、SI組立単位とエネルギーとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »