ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ES-1001と液体燃料ロケット

ショートカット: 違い類似点ジャカード類似性係数参考文献

ES-1001と液体燃料ロケットの違い

ES-1001 vs. 液体燃料ロケット

ES-1001は東京大学宇宙航空研究所(後の宇宙科学研究所(ISAS))によって開発された液体水素/液体酸素を推進剤とする推力10トン級の上段用のロケットエンジンである。LE-5の開発に失敗した場合には10トン級エンジンをバックアップとして使用する予定であった。 日本の液体燃料ロケット開発は戦中の秋水に使用された特呂二号原動機の経験があったものの、改めて開発する必要があり、宇宙研を中心として上段ロケット用に適した液体水素/液体酸素を推進剤とする液体ロケットが開発された。当時、液体水素を推進剤とするロケットエンジンを開発していたのはアメリカ、フランス、ソビエト、中国、日本だけだった。 開発にあたり、宇宙開発事業団から10トン燃焼器(RE-5)と液水/液酸メイン弁、液水/液酸予冷弁の供与を受けた。 本機を搭載した実機が打ち上げられる事はなかったが、開発過程で得られた知見はES-702と共に後のLE-5シリーズをはじめとする日本の液水/液酸系推進系の開発に活用された。. 液体燃料ロケット(えきたいねんりょうロケット)は、液体の燃料と酸化剤をタンクに貯蔵し、それをエンジンの燃焼室で適宜混合して燃焼させ推力を発生させるロケットである。単に液体ロケットとも呼ばれる。人工衛星の姿勢制御エンジンなど一部には過酸化水素やヒドラジンのように自己分解を起こす推進剤を触媒等で分解して噴射する、簡単な構造の一液式のものもある。 液体燃料は一般的に燃焼ガスの平均分子量が小さく、固体燃料に比べて比推力に優れているうえ、推力可変機能、燃焼停止や再着火などの燃焼制御機能を持つことができる。また、エンジン以外のタンク部分は単に燃料を貯蔵しているだけなので、特に大型のロケットでは構造効率の良いロケットが製作できる。一方、燃焼室や噴射器、ポンプなどの機構は複雑で小型化が困難なので、小型のロケットでは同規模の固体ロケットに比べて構造効率は悪化する。また、推進剤の種別によっては、腐食性や毒性を持ち貯蔵が困難であったり、極低温なため断熱や蒸発したガスの管理、蒸発した燃料の補充などで取り扱いに難があるものもある。.

ES-1001と液体燃料ロケット間の類似点

ES-1001と液体燃料ロケットは(ユニオンペディアに)共通で11ものを持っています: エキスパンダーサイクルガス発生器サイクルターボポンプES-702LE-5LE-5ALE-5BLE-7LE-7A液体酸素液体水素

エキスパンダーサイクル

フルエキスパンダーサイクルの模式図。ノズルと燃焼室から熱を受け取った推進剤でターボポンプを駆動する。 エキスパンダーサイクル(expander cycle)とは二液推進系ロケットエンジンの動作サイクルの1つである。燃料蒸気を作用気体としてターボポンプを駆動し、液体燃料と酸化剤を燃焼室に送りロケットの推進を実現する、蒸気機関と内燃機関の複合サイクルエンジンである。.

ES-1001とエキスパンダーサイクル · エキスパンダーサイクルと液体燃料ロケット · 続きを見る »

ガス発生器サイクル

生器サイクル (ガスはっせいきサイクル)またはガスジェネレータサイクル、オープンサイクルは、2液推進系ロケットエンジンの動作サイクルの1つである。 燃料と酸化剤の一部を主燃焼室とは別のガス発生器(副燃焼室)で燃焼させ、その燃焼ガスで燃料・酸化剤を供給するターボポンプを駆動させる。ターボポンプを駆動した後のガスはそのまま排出される。 ガス発生器サイクルには、同様に副燃焼室を用いる二段燃焼サイクルに比べいくつかの有利な点がある。ガス発生器に燃料・酸化剤を送る場合には、二段燃焼サイクルの高圧のプレバーナーへ推進剤を供給する場合のように高い圧力を加える必要がない。そのためにターボポンプの開発や製造はより容易になる。二段燃焼サイクルに比べて比推力でやや劣り推力も下がるものの、開発や製造にかかるコストを抑える事が出来る。なお、ガス発生器用に用いられている燃料・酸化剤が直接出力に寄与しないため、推進剤効率の面では劣る部分がある。 ガス発生器サイクルを採用している主なロケットエンジンとしては、サターンVの第1段エンジンF-1や、その上段エンジンのJ-2、アリアン5のヴァルカンなどがある。日本においては、H-IロケットのLE-5がこの形式である。 ファルコン1第1段のマーリンは最新式のガス発生器式エンジンの一例である。.

ES-1001とガス発生器サイクル · ガス発生器サイクルと液体燃料ロケット · 続きを見る »

ターボポンプ

V2ロケットのターボポンプ ターボポンプ.

ES-1001とターボポンプ · ターボポンプと液体燃料ロケット · 続きを見る »

ES-702

ES-702は東京大学宇宙航空研究所(後の宇宙科学研究所(ISAS))によって開発された液体水素/液体酸素を推進剤とする推力7トン級の上段用のロケットエンジンである。10トン級LOX/LH2エンジンの成果をコンポーネントレベルでフィードバックしており、LE-5の開発に失敗した場合には10トン級エンジンをバックアップとして使用する予定であった。 本機を搭載した実機が打ち上げられる事はなかったが、開発過程で得られた知見は後のLE-5シリーズをはじめとする日本の液水/液酸系推進系の開発に活用された。.

ES-1001とES-702 · ES-702と液体燃料ロケット · 続きを見る »

LE-5

LE-5エンジン展示モデル LE-5は宇宙開発事業団(NASDA、現宇宙航空研究開発機構JAXA)が航空宇宙技術研究所(NAL)や三菱重工業(MHI)、石川島播磨重工業(現IHI)と共に開発したロケットエンジンである。.

ES-1001とLE-5 · LE-5と液体燃料ロケット · 続きを見る »

LE-5A

LE-5Aは宇宙開発事業団(NASDA)が航空宇宙技術研究所(NAL)や三菱重工業(MHI)、石川島播磨重工業(IHI)と共に開発したロケットエンジンである。.

ES-1001とLE-5A · LE-5Aと液体燃料ロケット · 続きを見る »

LE-5B

LE-5Bは日本で開発されたロケットエンジンであり、H-IIAロケット・H-IIBロケットの第二段エンジンである。 H-Iロケットの第二段エンジンであるLE-5の流れをくみ、H-IIロケットの第二段エンジンLE-5Aをもとに主にコストダウンをはかった改良型。推進剤は液体酸素(LOX)と液体水素(LH2)で真空中推力は137.2kN(.

ES-1001とLE-5B · LE-5Bと液体燃料ロケット · 続きを見る »

LE-7

LE-7(名古屋市科学館 2006年) LE-7エンジンは、宇宙開発事業団(NASDA)が航空宇宙技術研究所(NAL)、三菱重工業、石川島播磨重工業と共に開発したH-IIロケットの第1段用液体ロケットエンジン。日本初の第1段用液体ロケットエンジンである。 現在は、LE-7の設計を元にコストダウンと信頼性向上を図ったLE-7AエンジンがH-IIAロケットおよびH-IIBロケットの一段目に使用されている。.

ES-1001とLE-7 · LE-7と液体燃料ロケット · 続きを見る »

LE-7A

LE-7Aは、日本の宇宙開発事業団(NASDA)が三菱重工業や石川島播磨重工業と共に開発した液体燃料ロケットエンジンである。H-IIロケット第一段に使われていたLE-7エンジンを改良したもので、H-IIAロケットの第一段には1基、H-IIBロケットの第一段には2基使用されている。.

ES-1001とLE-7A · LE-7Aと液体燃料ロケット · 続きを見る »

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。.

ES-1001と液体酸素 · 液体燃料ロケットと液体酸素 · 続きを見る »

液体水素

液体水素用タンク 液体水素(えきたいすいそ)とは、液化した水素のこと。沸点は-252.6℃で融点は-259.2℃である(重水素では、沸点-249.4℃)。水素の液化は、1896年にイギリスのジェイムズ・デュワーが初めて成功した。.

ES-1001と液体水素 · 液体水素と液体燃料ロケット · 続きを見る »

上記のリストは以下の質問に答えます

ES-1001と液体燃料ロケットの間の比較

液体燃料ロケットが150を有しているES-1001は、21の関係を有しています。 彼らは一般的な11で持っているように、ジャカード指数は6.43%です = 11 / (21 + 150)。

参考文献

この記事では、ES-1001と液体燃料ロケットとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »