ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ヒルベルト・プログラム

索引 ヒルベルト・プログラム

ヒルベルト・プログラムとは、ダフィット・ヒルベルトによって提唱された、数学を形式化しようとする試みのことをいう。ヒルベルト計画とも呼ばれる。.

29 関係: 実数完全性幾何学基礎論形式主義 (数学)ヒルベルトの23の問題ダフィット・ヒルベルト命題エプシロン・ノートカット除去定理クルト・ゲーデルゲルハルト・ゲンツェンゲーデルの完全性定理ゲーデルの不完全性定理公理公理的集合論竹内外史無矛盾証明証明論高階述語論理自然数集合論逆数学数学基礎論数理論理学1930年1934年1954年

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: ヒルベルト・プログラムと実数 · 続きを見る »

完全性

数理論理学における完全性(かんぜんせい、completeness)には二つの意味がある。.

新しい!!: ヒルベルト・プログラムと完全性 · 続きを見る »

幾何学基礎論

幾何学基礎論(きかがくきそろん、foundation of geometry)とはユークリッド幾何学の公理主義的研究である。 平行線公準の問題より非ユークリッド幾何学が生まれたが、それは同時にユークリッド幾何学の厳密性にも疑問が投げかけられることでもあった。すなわち、.

新しい!!: ヒルベルト・プログラムと幾何学基礎論 · 続きを見る »

形式主義 (数学)

数学における形式主義()とは、数学における命題を少数の記号によって表し、証明において使われる推論を純粋に記号の操作と捉える考え方のことを指す。.

新しい!!: ヒルベルト・プログラムと形式主義 (数学) · 続きを見る »

ヒルベルトの23の問題

ヒルベルトの23の問題(ヒルベルトの23のもんだい、)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 とも呼ばれる。 1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された。.

新しい!!: ヒルベルト・プログラムとヒルベルトの23の問題 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ヒルベルト・プログラムとダフィット・ヒルベルト · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: ヒルベルト・プログラムと命題 · 続きを見る »

エプシロン・ノート

ε0(えぷしろん・のーと (Epsilon nought)、または、えぷしろん・ぜろ (Epsilon zero))は、数学における超限順序数の一つ。ω(最小の超限順序数)から有限回の加算・乗算・冪乗では到達できない最小の超限順序数として定義される。従って極限順序数でもある。 カントールの標準形で表すと次の通り。 ただしこれは十分な定義ではない。α.

新しい!!: ヒルベルト・プログラムとエプシロン・ノート · 続きを見る »

カット除去定理

ット除去定理(カットじょきょていり、Cut-elimination theorem)は、シークエント計算の手法の重要性を示す、数理論理学の主要な結果のひとつである。(数理論理学の)基本定理と呼ぶこともある。ゲルハルト・ゲンツェンが1934年に書いた記念碑的論文 "Investigations into Logical Deduction" で、古典論理と直観論理の体系をそれぞれ形式化したシークエント計算の形式的体系 LK 及び LJ において、最初に証明が与えられた。カット除去定理は、シークエント計算の推論規則であるカット規則を用いて証明可能な式には、カット規則を用いない証明図もまた必ず存在することを示したものである。.

新しい!!: ヒルベルト・プログラムとカット除去定理 · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: ヒルベルト・プログラムとクルト・ゲーデル · 続きを見る »

ゲルハルト・ゲンツェン

ルハルト・ゲンツェン ゲルハルト・カール・エーリヒ・ゲンツェン(Gerhard Karl Erich Gentzen、1909年11月24日 - 1945年8月4日)はドイツの論理学者・数学者。 ヘルマン・ワイルとパウル・ベルナイスの弟子。ゲッティンゲン大学でワイルに学び、1934年に学位を取得。プラハ大学で講師となる。1945年、第二次世界大戦でソ連軍に捕らえられ、プラハの捕虜収容所で栄養失調のため死去した。 主要な業績は、自然演繹 NK, NJ とシークエント計算 LK, LJ と呼ばれる証明論の体系の確立である。 自然演繹の体系は、「自然」の名の通り実際の人間の推論過程に近い直観的で分かりやすい体系である。 一方、シーケント計算は、最小限の公理 A → A と、構造および論理結合子に関する推論規則からなる。 NK, LK は古典論理を扱い、NJ, LJ は直観主義論理を扱う。ゲンツェンはこの LK においてカット除去定理 (基本定理) を証明した。 この定理は、ある定理を導く論理の道筋には、その定理自身と公理より複雑なものは現れないようにできることを示し、 LK の完全性の証明に使われた。 他に純粋算術の無矛盾性証明などの業績がある。 「すべての」を意味する記号∀を使い始めたのもゲンツェンである。.

新しい!!: ヒルベルト・プログラムとゲルハルト・ゲンツェン · 続きを見る »

ゲーデルの完全性定理

数理論理学においてゲーデルの完全性定理(ゲーデルのかんぜんせいていり、Gödel's completeness theorem、Gödelscher Vollständigkeitssatz)とは、第一階述語論理の恒真な論理式はその公理系からすべて導出可能であることを示した定理を言う。1929年にクルト・ゲーデルが証明した。.

新しい!!: ヒルベルト・プログラムとゲーデルの完全性定理 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: ヒルベルト・プログラムとゲーデルの不完全性定理 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: ヒルベルト・プログラムと公理 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: ヒルベルト・プログラムと公理的集合論 · 続きを見る »

竹内外史

竹内 外史(たけうち がいし、1926年1月25日 - 2017年5月10日)は、日本の数学者、論理学者。専門は数学基礎論(数理論理学、公理的集合論、証明論など)。イリノイ大学名誉教授。 解析学の基礎付けなど、数学基礎論の研究で世界的に知られる。昭和57年(1982年)朝日賞(昭和56年度)受賞。主な著作に「集合とはなにか」「現代集合論入門」「証明論と計算量」「層・圏・トポス」など。1966年以来、長くイリノイ大学で教鞭を執っていた。その間、実数論の無矛盾性の証明を試みる。.

新しい!!: ヒルベルト・プログラムと竹内外史 · 続きを見る »

真、眞(しん、まこと).

新しい!!: ヒルベルト・プログラムと真 · 続きを見る »

無矛盾

数学基礎論において、無矛盾性 (consistency) は公理系の最も重要な概念の一つである。.

新しい!!: ヒルベルト・プログラムと無矛盾 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: ヒルベルト・プログラムと証明 · 続きを見る »

証明論

証明論(proof theory)は、数理論理学の一分野であり、証明を数学的対象として形式的に表し、それに数学的解析を施す。.

新しい!!: ヒルベルト・プログラムと証明論 · 続きを見る »

高階述語論理

階述語論理(こうかいじゅつごろんり、Higher-order logic)は、一階述語論理と様々な意味で対比される用語である。 例えば、その違いは量化される変項の種類にも現われている。一階述語論理では、大まかに言えば述語に対する量化ができない。述語を量化できる論理体系については二階述語論理に詳しい。 その他の違いとして、基盤となる型理論で許されている型構築の違いがある。高階述語(higher-order predicate)とは、引数として1つ以上の別の述語をとることができる述語である。一般に n 階の高階述語の引数は1つ以上の (n − 1) 階の述語である(ここで n > 1)。同じことは高階関数(higher-order function)にも言える。 高階述語論理は表現能力が高いが、その特性、特にモデル理論に関わる部分では、多くの応用について性格が良いとは言えない。クルト・ゲーデルの業績により、古典的高階述語論理は(帰納的に公理化された)健全で完全な証明計算が認められないとされた。しかし、Henkin model によれば、健全で完全な証明計算は存在する。 高階述語論理の例として、アロンゾ・チャーチの Simple Theory of Types や Calculus of Constructions (CoC) がある。.

新しい!!: ヒルベルト・プログラムと高階述語論理 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: ヒルベルト・プログラムと自然数 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: ヒルベルト・プログラムと集合論 · 続きを見る »

逆数学

逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析の結果を反映している。 逆数学は、によってはじめて言及された。基本文献はを参照。.

新しい!!: ヒルベルト・プログラムと逆数学 · 続きを見る »

数学基礎論

数学基礎論(すうがくきそろん、英語:)は、数学の一分野。他の分野が整数・実数・図形・関数などを取り扱うのに対し、数学自体を対象とする。.

新しい!!: ヒルベルト・プログラムと数学基礎論 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: ヒルベルト・プログラムと数理論理学 · 続きを見る »

1930年

記載なし。

新しい!!: ヒルベルト・プログラムと1930年 · 続きを見る »

1934年

記載なし。

新しい!!: ヒルベルト・プログラムと1934年 · 続きを見る »

1954年

記載なし。

新しい!!: ヒルベルト・プログラムと1954年 · 続きを見る »

ここにリダイレクトされます:

ヒルベルトプログラム

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »