ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ジョン・ドルトン

索引 ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

102 関係: 助動詞 (言語学)原子原子論原子量博物学反射古代ギリシア同位体塩基塩素太陽変動屈折二酸化窒素亜酸化窒素二酸化炭素地球の大気化合物化学反応化学者マンチェスターマンチェスター大学マンチェスター・メトロポリタン大学チャールズ・グレイ (第2代グレイ伯爵)ハリス・マンチェスター・カレッジ (オックスフォード大学)ハンフリー・デービーハドレー循環メタンリン酸塩ルクレティウスロンドンロイヤル・メダルトマス・トムソン (化学者)ブリタニカ百科事典パリヒ素デモクリトスフランスドルトンの法則ダルトン極小期分詞アンモニアアントワーヌ・ラヴォアジエイェンス・ベルセリウスイギリスエチレンオレンジ色カルボン酸無水物カンバーランドクエーカー...グレートブリテン及びアイルランド連合王国ケンダルシャルルの法則ジョセフ・ルイ・ゲイ=リュサックジェームズ・プレスコット・ジュールスターリング・ポンド元素元素記号倍数比例の法則王立協会王立研究所砂糖科学アカデミー (フランス)真空統一原子質量単位熱膨張率物理学者非国教徒 (イギリス)視覚質量保存の法則錐体細胞蒸発蒸気蒸気圧脳梗塞自然哲学色覚異常英語核分裂反応核融合反応水銀水蒸気気体気象学温度湧水湖水地方滴定日記1766年1826年1844年7月27日9月6日 インデックスを展開 (52 もっと) »

助動詞 (言語学)

言語学でいう助動詞(じょどうし)とは、動詞と同じような形態を持つが、他の動詞と結びついて相、法などの文法機能を表す語である。日本語の「-ている」や「-ておく」など、英語の can や will などがある。 国文法では、この助動詞を補助動詞と呼び、「-た」や「-れる・-られる」などを「助動詞」と呼ぶ。言語学ではこれらは英語の -ing や -ed と同様に語尾や接尾辞と見なされる。.

新しい!!: ジョン・ドルトンと助動詞 (言語学) · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: ジョン・ドルトンと原子 · 続きを見る »

原子論

原子論(げんしろん、atomism)とは、“すべての物質は非常に小さな、分割不可能な粒子(Atom、原子)で構成されている”、とする仮説、理論、主義などのこと。.

新しい!!: ジョン・ドルトンと原子論 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

新しい!!: ジョン・ドルトンと原子量 · 続きを見る »

博物学

博物学(はくぶつがく、Natural history, 場合によっては直訳的に:自然史)は、自然に存在するものについて研究する学問。広義には自然科学のすべて。狭義には動物・植物・鉱物(岩石)など(博物学における「界」は動物界・植物界・鉱物界の「3界」である)、自然物についての収集および分類の学問。英語の"Natural history" の訳語として明治期に作られた。東洋では本草学がそれにあたる。.

新しい!!: ジョン・ドルトンと博物学 · 続きを見る »

反射

反射(はんしゃ、reflection)は、光や音などの波がある面で跳ね返る反応のことである。.

新しい!!: ジョン・ドルトンと反射 · 続きを見る »

古代ギリシア

この項目では、太古から古代ローマに占領される以前までの古代ギリシアを扱う。.

新しい!!: ジョン・ドルトンと古代ギリシア · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: ジョン・ドルトンと同位体 · 続きを見る »

塩の結晶 塩(しお)は、塩化ナトリウムを主な成分とし、海水の乾燥・岩塩の採掘によって生産される物質。塩味をつける調味料とし、また保存(塩漬け・塩蔵)などの目的で食品に使用されるほか、ソーダ工業用・融氷雪用・水処理設備の一種の軟化器に使われるイオン交換樹脂の再生などにも使用される。 日本の塩事業法にあっては、「塩化ナトリウムの含有量が100分の40以上の固形物」(ただし、チリ硝石、カイニット、シルビニットその他財務省令で定める鉱物を除く)と定義される(塩事業法2条1項)。.

新しい!!: ジョン・ドルトンと塩 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: ジョン・ドルトンと塩基 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: ジョン・ドルトンと塩素 · 続きを見る »

太陽変動

ここ30年の太陽変動の様子 太陽変動(たいようへんどう、太陽活動変動、太陽活動変調、solar variation)とは、太陽からの放射量の変化を指す。 これら変動はいくつかの周期単位が存在する。最も基礎的なものとして、11年の太陽活動周期 (黒点周期) があり、典型的な非周期的変動である。 太陽活動は、ここ最近の10年間は衛星観測から、それ以前は「間接的」な変動因子から計測されていた。気候学者たちは、何らかの太陽活動変化特に地球に影響を与える変動因子を解明することに関心を寄せており、地球の気候変化に影響する太陽活動変化を「太陽の放射強制力」と呼ぶ。 全太陽放射照度 (TSI) の変動計測は、衛星観測時代以前には、計測閾値以下の変動にとどまっていたが、現在では紫外線領域の数パーセント程度の小さな変動を捕らえている。太陽全放射は、現在 (最近の11年周期・第23期) において、約0.1パーセントまたは約1.3W/m2の極大-極小変動幅を記録している。 地球大気圏の外表面で太陽放射を受け取る量の変化は、平均値1.366ワット毎平方メートル (W/m2) に比してごく僅かである。 長期間の直接計測による変化記録 (衛星観測) は存在しない。また代理変数として解釈可能な変化も近年の議論の結果、現在から2000年前まで0.1パーセント前後の幅でしかないことが判明したものの、その一方で、他の痕跡により1675年から2000年までに放射照度が0.2パーセント増加したという。太陽の活動変化と火山活動が組み合わさる効果は、マウンダー極小期のように気候変動に顕著な影響を及ぼす。 2006年、太陽活動に関する研究と、現存する研究書と出版物のレビューがネイチャーに掲載された。この報告書は「1970年代の半ばから、太陽の輝度について純増が見られず、太陽の熱出力の変化が過去400年に渡って地球温暖化に対する影響を殆ど与えていない」というものであった。しかしながら、同じ報告書の著者たちは「太陽の輝度を別にしては、宇宙線や太陽紫外線の与える気候への微妙な影響を語ることは出来ない。研究者たちにとって、これらの影響については、物理モデルの開発が未だ貧弱なために、確証を得るには至っていない。」と述べている。.

新しい!!: ジョン・ドルトンと太陽変動 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: ジョン・ドルトンと屈折 · 続きを見る »

二酸化窒素

二酸化窒素(にさんかちっそ、nitrogen dioxide)は、NO2 という化学式で表される窒素酸化物で、常温・常圧では赤褐色の気体または液体である。窒素の酸化数は+4。窒素と酸素の混合気体に電気火花を飛ばすと生成する。環境汚染の大きな要因となっている化合物である。赤煙硝酸の赤色は二酸化窒素の色に由来している。大気中の濃度は、約0.027 ppm。二酸化窒素は常磁性の、C2v対称性を持つ曲がった分子である。.

新しい!!: ジョン・ドルトンと二酸化窒素 · 続きを見る »

亜酸化窒素

亜酸化窒素(あさんかちっそ。英語、nitrous oxide)とは、窒素酸化物の1種である。化学式ではN2Oと表されるため、一酸化二窒素(いっさんかにちっそ)とも呼ばれる。 ヒトが吸入すると陶酔させる作用があることから笑気ガス(しょうきガス。英語、laughing gas)とも言い、笑気と略されることもある。また麻酔作用もあるため、全身麻酔など医療用途で用いることもあり、世界保健機関においては必須医薬品の一覧にも載せられている。この他にも、工業用途では燃料の発火促進のために使われる。また、調理用途では食材をムース状に加工するエスプーマと呼ばれる調理法に使用される。 しかし、陶酔感を得るために亜酸化窒素を乱用する者が後を絶たないことから、日本では、2016年2月18日に医薬品医療機器法に基づき「亜酸化窒素」が指定薬物に指定された。そして、日本では同月28日から、医療などの目的以外に亜酸化窒素を製造・販売・所持・使用することなどが禁止されるに至った。なお、乱用以外にも、亜酸化窒素が大気中へと放出されると、 紫外線によって分解されるなどして一酸化窒素を生成し、この一酸化窒素にはオゾン層を破壊する作用がある。したがって、亜酸化窒素の使用もオゾン層の破壊につながるという地球環境への問題も抱えている。.

新しい!!: ジョン・ドルトンと亜酸化窒素 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: ジョン・ドルトンと二酸化炭素 · 続きを見る »

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) 地球の大気(ちきゅうのたいき、)とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉) 。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気()」と呼ぶ。 大気が存在する範囲を大気圏(たいきけん)Yahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との境界は、何を基準に考えるかによって幅があるが、便宜的に地表から概ね500km以下が地球大気圏であるとされる。.

新しい!!: ジョン・ドルトンと地球の大気 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: ジョン・ドルトンと化合物 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: ジョン・ドルトンと化学反応 · 続きを見る »

化学者

化学者(かがくしゃ)は主として化学を研究する研究者である。 化学を意味する"chemistry"は、ギリシア語の「雑多な素材を混ぜ合わせる」という言葉から由来したといわれるが、その本来の語源はアラビア語(كيمياءまたはالكيمياء)である。日本では「舎密学(せいみがく)」と表記したこともある。 語源的には、alchemist(錬金術師、中世の神秘的化学者)と同じ。最初のもっとも著名な化学者は、バーゼル大学医学部の教授だったといわれるパラケルススで、彼はタロット占いのカードの1に描かれている「魔法使い」のモデルとしても知られている。 現在では、意味は化学に携わる研究者のことに限られる。他の学問領域との境界領域に携わっている場合、どう呼ぶかについての明確な定義はない。 時折科学者と取り違えられたり混同される場合があるが、科学と化学は分野の内容や範疇および定義が異なる為に「似て非なる」存在である。 化学者というと「長い白衣を着て、手に試験管を持つ」というステレオタイプがあるが、実際にはそのような化学者は稀である。 長白衣は「袖を引っ掛かけるため、瓶や器具を転倒させて危険」といわれている。ニチェット式の(医師等が着用する)白衣を着用する。元々は指示薬の染みをつけないようにするものであるから、割烹着以上の意味はない。また、試験管で反応させることは稀で、通常はガラス器具を組み立てて実験する。.

新しい!!: ジョン・ドルトンと化学者 · 続きを見る »

マンチェスター

マンチェスター (IPA) は、イングランドの北西部、グレーター・マンチェスターに位置する都市。北部イングランドを代表する都市であり、イギリスで9番目の都市である。1853年にが布かれ、2011年の時点で、マンチェスター(都市と都市バラ)の人口は49万人である。2011年の近郊を含む都市圏人口は224万人であり、同国第3位である。.

新しい!!: ジョン・ドルトンとマンチェスター · 続きを見る »

マンチェスター大学

マンチェスター大学(The University of Manchester)は、イギリス、マンチェスターにある国立大学で、イングランドで最初の都市大学の一つである。2004年10月、一般にマンチェスター大学と呼ばれたマンチェスター・ビクトリア大学(Victoria University of Manchester)にマンチェスター工科大学(UMIST:University of Manchester Institute of Science and Technology)が再統合され、現在のマンチェスター大学(The University of Manchester)が誕生した。ラッセル・グループ(イギリスの大規模研究型大学群)に加盟している。 20世紀の発明に数多く貢献し、現在までに25人もの卒業生、研究者、教授らがノーベル賞を受賞している、英国が誇る名門国立大学である。受賞者数はケンブリッジ大学、オックスフォード大学に次いで英国第3位である。4名の受賞者が現役で教鞭をとっており、その数は英国最多である。 世界初のコンピューターは、1948年にマンチェスター大学で生まれた。 全国就職誌レポート(2012年)によると、英国ベスト100優良企業がイギリスで最も採用ターゲットとする名門大学となっている。また、英国GTI media社が全国7000以上の高等学校の受験生(2010年~2013年)に実施したアンケートでは、イギリスで最も行きたい大学として、ケンブリッジ大学、オックスフォード大学に次いで英国第3位であった。 エレクトロニクスの分野で世界を牽引する働きをしており、特にウェアラブル端末やスマートテキスタイルズ等の新領域での研究が盛んである。また、これらを応用した産業界との提携も幅広く、多数の日本企業も含む多国籍企業との産業共同研究を推進している。.

新しい!!: ジョン・ドルトンとマンチェスター大学 · 続きを見る »

マンチェスター・メトロポリタン大学

マンチェスター・メトロポリタン大学 (英語:Manchester Metropolitan University)は、イギリス、マンチェスターにある国立大学。イギリスの中でも学生数でいうと5番目に規模が大きい大学である。.

新しい!!: ジョン・ドルトンとマンチェスター・メトロポリタン大学 · 続きを見る »

チャールズ・グレイ (第2代グレイ伯爵)

2代グレイ伯爵チャールズ・グレイ(Charles Grey, 2nd Earl Grey, 、1764年3月13日 - 1845年7月17日)は、イギリスの政治家、貴族。 ホイッグ党フォックス派の議員として頭角を現し、1806年のフォックスの死後にホイッグ党の指導者となった。長きにわたって野党だったホイッグ党が1830年に政権獲得した際に首相(在職1830年 - 1834年)に就任した。第一次選挙法改正をはじめとする多くの自由主義的政治改革を成し遂げたが、政権内部の亀裂で1834年に辞職し、メルバーン子爵に首相・ホイッグ党党首の座を譲った。 父が叙爵された1806年から自身が爵位を継承する1807年まで、ホーウィック子爵(Viscount Howick)の儀礼称号を使用した。.

新しい!!: ジョン・ドルトンとチャールズ・グレイ (第2代グレイ伯爵) · 続きを見る »

ハリス・マンチェスター・カレッジ (オックスフォード大学)

ハリス・マンチェスター・カレッジ (Harris Manchester College) は、イギリス、オックスフォード大学の構成カレッジの1つ。大学、オックスフォードの街の中心に位置する。最小のカレッジで、最も寄付が少ないカレッジ(概算 500万ポンド, 10億円(2003年))。 1786年、長老派教会によってマンチェスターにてマンチェスター・アカデミー(Manchester Academy)として始まった。 その後ヨーク、マンチェスター、ロンドンなどへ場所を変えた後、1839年にオックスフォードに開設、1840年からはロンドン大学と提携した。 ハリス・マンチェスター・カレッジは1990年に Permanent Private Hallとなり、1996年オックスフォード大学のカレッジの1つになった。 今日、ハリス・マンチェスター・カレッジは21歳以上の学生を積極的に受け入れている。.

新しい!!: ジョン・ドルトンとハリス・マンチェスター・カレッジ (オックスフォード大学) · 続きを見る »

ハンフリー・デービー

初代準男爵、サー・ハンフリー・デービー(Sir Humphry Davy, 1st Baronet、1778年12月17日 - 1829年5月29日)は、イギリスの化学者で発明家David Knight, ‘Davy, Sir Humphry, baronet (1778–1829)’, Oxford Dictionary of National Biography, Oxford University Press, 2004 。アルカリ金属やアルカリ土類金属をいくつか発見したことで知られ、塩素やヨウ素の性質を研究したことでも知られている。ベルセリウスは On Some Chemical Agencies of Electricity と題したデービーの1806年の Bakerian Lectureを「化学の理論を豊かにした最良の論文のひとつ」としている, 。この論文は19世紀前半の様々な化学親和力理論の核となった。1815年、デービー灯を発明し、可燃性の気体が存在しても坑夫が安全に働けるようになった。.

新しい!!: ジョン・ドルトンとハンフリー・デービー · 続きを見る »

ハドレー循環

ハドレー循環(ハドレーじゅんかん、英語:Hadley circulation)とは、赤道付近で上昇した空気が緯度30度付近まで北上した後、下降し地表付近を南下して赤道に戻る循環のこと。 1735年にジョージ・ハドレー(George Hadley)は偏西風と貿易風の原因として、赤道付近で暖められた空気は密度が低くなって上昇し、上空を両極に向かって移動し、冷却され密度が高くなって下降し、地表付近を通って赤道に戻るという循環を提案した。赤道付近は両極付近よりも自転速度が速いため、赤道から極に輸送された空気は地表から見ると西風(偏西風)となり、極から赤道に輸送された空気は東風(貿易風)となる。 しかし、実際の空気の流れを観測してみると赤道付近で空気は確かに上昇しているが、この空気は極までは運ばれず緯度30度付近で下降してしまう。この循環の機構はハドレーの提案したものと合っているため、この循環をハドレー循環と呼んでいる。 ハドレー循環により赤道付近には恒に上昇気流が存在し、低圧部となっており雨が多い。逆に緯度30度付近は恒に下降気流が存在し、亜熱帯高圧帯となっていて雨が少なく乾燥気候となっている。 ハドレー循環と同様の機構により弱いながらも緯度60度付近で上昇して両極で下降する循環が存在する。これを極循環という。.

新しい!!: ジョン・ドルトンとハドレー循環 · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

新しい!!: ジョン・ドルトンとメタン · 続きを見る »

リン酸塩

リン酸塩(リンさんえん、)は、1個のリンと4個の酸素から構成される多原子イオンまたは基から形成される物質である。リン酸イオンは−3価の電荷を持ち、PO43−と書き表される。食品添加物としても使用される。 有機化学においては、リン酸のアルキル誘導体は有機リン酸化合物と呼称される。 リン酸塩は通常、元素のリンを含み、種々のリン酸鉱物(リン鉱)として見出される。一方、単体のリンやホスフィンなど低酸化状態のリン化合物は自然界では見ることができない(稀に隕石中に、ホスフィン類が見出される)。.

新しい!!: ジョン・ドルトンとリン酸塩 · 続きを見る »

ルクレティウス

ティトゥス・ルクレティウス・カルス(Titus Lucretius Carus, 紀元前99年頃 - 紀元前55年)は、共和政ローマ期の詩人・哲学者。エピクロスの思想を詩『事物の本性について』に著した。.

新しい!!: ジョン・ドルトンとルクレティウス · 続きを見る »

ロンドン

ンドン(London )はグレートブリテンおよび北アイルランド連合王国およびこれを構成するイングランドの首都。イギリスやヨーロッパ域内で最大の都市圏を形成している。ロンドンはテムズ川河畔に位置し、2,000年前のローマ帝国によるロンディニウム創建が都市の起源である。ロンディニウム当時の街の中心部は、現在のシティ・オブ・ロンドン(シティ)に当たる地域にあった。シティの市街壁内の面積は約1平方マイルあり、中世以来その範囲はほぼ変わっていない。少なくとも19世紀以降、「ロンドン」の名称はシティの市街壁を越えて開発が進んだシティ周辺地域をも含めて用いられている。ロンドンは市街地の大部分はコナベーションにより形成されている 。ロンドンを管轄するリージョンであるグレーター・ロンドンでは、選挙で選出されたロンドン市長とロンドン議会により統治が行われている。 ロンドンは屈指の世界都市として、芸術、商業、教育、娯楽、ファッション、金融、ヘルスケア、メディア、専門サービス、調査開発、観光、交通といった広範囲にわたる分野において強い影響力がある。また、ニューヨークと並び世界をリードする金融センターでもあり、2009年時点の域内総生産は世界第5位で、欧州域内では最大である。世界的な文化の中心でもある。ロンドンは世界で最も来訪者の多い都市であり、単一の都市圏としては世界で最も航空旅客数が多い。欧州では最も高等教育機関が集積する都市であり、ロンドンには大学が43校ある。2012年のロンドンオリンピック開催に伴い、1908年、1948年に次ぐ3度目のオリンピック開催となり、同一都市としては史上最多となる。 ロンドンは文化的な多様性があり、300以上の言語が使われている。2011年3月時点のロンドンの公式の人口は817万4,100人であり、欧州の市域人口では最大で、イギリス国内の全人口の12.7%を占めている。グレーター・ロンドンの都市的地域は、パリの都市的地域に次いで欧州域内で第2位となる8,278,251人の人口を有し、ロンドンの都市圏の人口は1200万人から1400万人に達し、欧州域内では最大である。ロンドンは1831年から1925年にかけて、世界最大の人口を擁する都市であった。2012年にマスターカードが公表した統計によると、ロンドンは世界で最も外国人旅行者が訪れる都市である。 イギリスの首都とされているが、他国の多くの首都と同様、ロンドンの首都としての地位を明示した文書は存在しない。.

新しい!!: ジョン・ドルトンとロンドン · 続きを見る »

ロイヤル・メダル

ョージ4世が1826年にこの賞を創設した。 ロイヤル・メダル(Royal Medal)は、王立協会が毎年イギリス連邦内で「自然界についての知識の発展に最も重要な貢献をした」2人の人物と「応用科学の分野で顕著な貢献をした」1人の人物に与える賞で、金メッキされた銀メダルが授与される。1826年、ジョージ4世が創設した。当初は毎年2つのメダルを、前年に重要な発見をした者に与えていた。その後対象期間が5年間に伸び、さらに3年間に短縮された。形式はウィリアム4世とヴィクトリア女王が受け継ぎ、特にヴィクトリア女王は1837年に条件を変更したため、数学も3年おきに選考対象とされるようになった。1850年に再び条件が変更され、イギリス連邦内で10年前から1年前までの間に発表された自然科学への重要な貢献2件を表彰することになった。 1965年、現在の形式となり、王立協会の推薦に基づいてイギリス王室が3つのメダルを毎年授与するようになった。自然科学全般を対象とするため、選考委員会は生物学関連部門と物理学関連部門に分かれている。.

新しい!!: ジョン・ドルトンとロイヤル・メダル · 続きを見る »

トマス・トムソン (化学者)

トマス・トムソン トマス・トムソン (1773年4月12日 – 1852年7月2日)はスコットランドの化学者、鉱物学者。ドルトンの原子理論を普及させた人物として知られる。 醸造・ワイン製造で用いられる検糖計(Allan's saccharometer)を発明。シリコンの命名者。息子は同姓同名の植物学者トマス・トムソン。 エジンバラ王立協会会員(1805年-)、王立協会会員(1811年-)、スウェーデン王立科学アカデミーの通信会員(corresponding member)(1815年-)。.

新しい!!: ジョン・ドルトンとトマス・トムソン (化学者) · 続きを見る »

ブリタニカ百科事典

ブリタニカ百科事典(ブリタニカひゃっかじてん、)は、英語で書かれた百科事典である。110人のノーベル賞受賞者と5人のアメリカ合衆国大統領を含む4,000人以上の寄稿者と専任の編集者約100人によって書かれており、学術的に高い評価を受けている。 英語の百科事典としては最古のものであり、今もなお製作されている。1768年から1771年にかけて、エディンバラで3巻の百科事典として発行されたのが始まりである。収録された記事は増えていき、巻数は第2版で10巻、第4版(1801年から1810年)では20巻となった。学術的な地位の向上は高名な寄稿者を招くのに役立ち、第9版(1875年から1889年)と第11版(1911年)は、文体と学術的知識において画期的なものとなった。版権が米国に移った第11版からは北米市場に売り込むため短く簡潔な記事となっていった。1933年、ブリタニカは百科事典としては初めて継続的な改訂が行われるようになった。2012年3月ブリタニカ社は、紙の書籍としての発行を取り止めオンライン版 に注力すると発表し、2010年に32巻で印刷されたものが紙の書籍としては最後となった。 1972年より日本語版もあり、『ブリタニカ国際大百科事典』(Britannica International Encyclopædia)として出版されている。 第15版からは三部構成となっている。短い記事(ほとんどが750語以下からなる)のマイクロペディア(小項目事典)12巻、長い記事(2~310ページ)のマクロペディア(大項目事典)19巻、そして知識を系統立てる、もしくは概観を示すプロペディア(総論・手引き)1巻である。マイクロペディアは簡単な調べ物やマクロペディアの手引書としての役割を担っている。記事の概観や詳細を知るためにはプロペディアを閲覧することが推奨されている。ブリタニカはおよそ50万の記事が約4000万語で記述されており、70年以上ほぼ一定に保たれている。1901年以降は米国を拠点に出版されてきたが、主にイギリス英語で書かれている。.

新しい!!: ジョン・ドルトンとブリタニカ百科事典 · 続きを見る »

パリ

ランドサット パリの行政区 パリ(Paris、巴里)は、フランス北部、イル=ド=フランス地域圏にある都市。フランスの首都であり、イル=ド=フランス地域圏の首府である。 フランス最大の都市であり、同国の政治、経済、文化などの中心である。ロンドン、ニューヨーク、香港、東京などと並ぶ世界トップクラスの世界都市でもある。行政上では、1コミューン単独で県を構成する特別市であり、ルーヴル美術館を含む1区を中心に、時計回りに20の行政区が並ぶ(エスカルゴと形容される)。.

新しい!!: ジョン・ドルトンとパリ · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: ジョン・ドルトンとヒ素 · 続きを見る »

デモクリトス

デモクリトス(デーモクリトス、Δημόκριτος、Democritus、紀元前460年頃-紀元前370年頃)は、古代ギリシアのイドニア学派の哲学者。 ソクラテスよりも後に生まれた人物だが慣例でソクラテス以前の哲学者に含まれる。.

新しい!!: ジョン・ドルトンとデモクリトス · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: ジョン・ドルトンとフランス · 続きを見る »

ドルトンの法則

ドルトンの法則(ドルトンのほうそく、)、あるいは分圧の法則とは、理想気体の混合物の圧力が各成分の分圧の和に等しいことを主張する法則であるアトキンス『物理化学』 pp.21-22。 1801年にジョン・ドルトンにより発見された。 この法則は、気体が理想的な混合をしている系における近似法則である。理想混合系において、複数の気体からなる混合気体を容器に入れたときのある温度での圧力(全圧)は、それぞれの気体を単離して同じ容器に入れたときの同じ温度での圧力(分圧)の和に等しい。つまり、成分 の分圧を とすると、全圧 は で与えられる。化学反応によって物質量の増減が生じないとき、理想気体の混合系は理想混合系となる。理想気体の状態方程式から、成分 の物質量を とするとき、温度 、体積 での分圧 は で与えられる。ドルトンの法則から全圧は となる。理想気体において状態方程式の形は気体の種類によらない。これは混合系においても同じで、容器内の気体の分子数にのみ依存し、個別の分子の種類にはよらない。また、全圧に対する分圧の比は となり、モル分率に等しくなる。 理想混合系において、混合によるヘルムホルツエネルギーの変化はない。言い換えれば、各成分を単離した純粋系におけるヘルムホルツエネルギーの和に等しい田崎『熱力学』 p.175。つまり、温度 、体積 、物質量 の理想混合系におけるヘルムホルツエネルギーは で与えられる。 は純粋な成分 の系のヘルムホルツエネルギーである。 圧力はヘルムホルツエネルギーの体積による偏微分で与えられるので となる。ここで は成分 を単離して、同じ温度と体積にしたときの圧力、つまり分圧である。これを代入すればドルトンの法則が導かれる。.

新しい!!: ジョン・ドルトンとドルトンの法則 · 続きを見る »

ダルトン極小期

400年間の黒点の数 ダルトン極小期(Dalton Minimum)は、1790年から1830年まで続いた、太陽活動が低かった期間である。イギリスの気象学者ジョン・ドルトンに因んで名付けられた。マウンダー極小期やシュペーラー極小期と同様に、ダルトン極小期は、地球の気温が平均より低かった時期と一致している。この期間、気温の変動は約1℃であった。 この期間に気温が平均よりも低かった正確な原因は分かっていない。最近の論文では、火山活動の上昇が気温の低下傾向の大きな原因の1つとなったと主張されている。 1816年の夏のない年は、ダルトン極小期の間に起こり、この年の気温低下の主原因は、インドネシアのタンボラ山の大爆発であった。.

新しい!!: ジョン・ドルトンとダルトン極小期 · 続きを見る »

分詞

分詞(ぶんし)は準動詞の一種であり、動詞が形容詞としての用法をあわせ持つものである。分詞には現在分詞と過去分詞、ラテン語や古典ギリシア語などには未来分詞がある。分詞は形容詞としての機能を持つのが普通だが、分詞構文では副詞としての機能も持つ。 「分詞」という用語は印欧語に対して用いることが多いが、その他の言語でも類似の活用形に用いることがある。 また、ロシア語等では分詞に類するものとして、動詞から派生した形容詞・副詞である形動詞・副動詞がある。.

新しい!!: ジョン・ドルトンと分詞 · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: ジョン・ドルトンとアンモニア · 続きを見る »

アントワーヌ・ラヴォアジエ

Marie-Anne Pierrette Paulzeの肖像画 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 マリー=アンヌが描いた実験図。A側の方を熱してAは水銀、Eは空気である 呼吸と燃焼の実験 ダイヤモンドの燃焼実験 宇田川榕菴により描かれた『舎密開宗』。蘭学として伝わったラヴォアジエの水素燃焼実験図 Jacques-Léonard Mailletによって作られたラヴォアジエ(ルーヴル宮殿) アントワーヌ・ラヴォアジエ Éleuthère Irénée du Pont de Nemoursとラヴォアジエ アントワーヌ=ローラン・ド・ラヴォアジエ(ラボアジェなどとも、フランス語:Antoine-Laurent de Lavoisier, 、1743年8月26日 - 1794年5月8日)は、フランス王国パリ出身の化学者、貴族。質量保存の法則を発見、酸素の命名、フロギストン説を打破したことから「近代化学の父」と称される - コトバンク、2013年3月27日閲覧。。 1774年に体積と重量を精密にはかる定量実験を行い、化学反応の前後では質量が変化しないという質量保存の法則を発見。また、ドイツの化学者、医師のゲオルク・シュタールが提唱し当時支配的であった、「燃焼は一種の分解現象でありフロギストンが飛び出すことで熱や炎が発生するとする説(フロギストン説)」を退け、1774年に燃焼を「酸素との結合」として説明した最初の人物で、1779年に酸素を「オキシジェーヌ(oxygène)」と命名した。ただし、これは酸と酸素とを混同したための命名であった。 しばしば「酸素の発見者」と言及されるが、酸素自体の最初の発見者は、イギリスの医者ジョン・メーヨーが血液中より酸素を発見していたが、当時は受け入れられず、その後1775年3月にイギリスの自然哲学者、教育者、神学者のジョゼフ・プリーストリーが再び発見し、プリーストリーに優先権があるため、厳密な表現ではない; 。進展中だった科学革命の中でプリーストリーの他にスウェーデンの化学者、薬学者のカール・ヴィルヘルム・シェーレが個別に酸素を発見しているため、正確に特定することは困難だが、結果としてラヴォアジエが最初に酸素を「酸素(oxygène)」と命名したことに変わりはない。またアメリカの科学史家の トーマス・クーンは『科学革命の構造』の中でパラダイムシフトの概念で説明しようとした。。なお、プリーストリーは酸素の発見論文を1775年に王立協会に提出しているため、化学史的に酸素の発見者とされる人物はプリーストリーである。 また、化学的には誤りではあったが物体の温度変化を「カロリック」によって引き起こされるものだとし、これを体系づけてカロリック説を提唱した。.

新しい!!: ジョン・ドルトンとアントワーヌ・ラヴォアジエ · 続きを見る »

イェンス・ベルセリウス

イェンス・ヤコブ・ベルセリウス(スウェーデン語:Jöns Jacob Berzelius、1779年8月20日 - 1848年8月7日)は、スウェーデンリンシェーピング出身の化学者、医師。 イギリスの化学者ジョン・ドルトンによる複雑な元素記法に代わり、現在でも広く用いられている元素記号をラテン名やギリシャ名に則ってアルファベットによる記法を提唱し、原子量を精密に決定したことで知られる。また、セリウム、セレン、トリウムといった新しい元素を発見。「タンパク質」や「触媒」といった化学用語を考案。近代化学の理論体系を組織化し、集大成した人物である。クロード・ルイ・ベルトレーやハンフリー・デービーら当代の科学者だけでなく、政治家クレメンス・フォン・メッテルニヒや文豪ヨハン・ヴォルフガング・フォン・ゲーテとも親交があった。弟子にフリードリヒ・ヴェーラーやジェルマン・アンリ・ヘスがいる。.

新しい!!: ジョン・ドルトンとイェンス・ベルセリウス · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: ジョン・ドルトンとイギリス · 続きを見る »

エチレン

チレン(ethylene、IUPAC命名法では エテン (ethene) )は、分子式 C2H4、構造式 CH2.

新しい!!: ジョン・ドルトンとエチレン · 続きを見る »

オレンジ色

thumb オレンジ色(オレンジいろ)は、果物のオレンジの実のような色「オレンジ」『スーパー大辞林』三省堂、2010年。"orange" New Oxford American Dictionary, Oxford University Press, 2010.

新しい!!: ジョン・ドルトンとオレンジ色 · 続きを見る »

カルボン酸無水物

ルボン酸無水物(カルボンさんむすいぶつ、carboxylic anhydride)とは、2分子のカルボン酸を脱水縮合させた化合物 (R-CO-O-CO-R') のことである。酸無水物(さんむすいぶつ;英 Acid anhydride)の一種。単に酸無水物といった場合にはこのカルボン酸無水物を指すことが多い。.

新しい!!: ジョン・ドルトンとカルボン酸無水物 · 続きを見る »

カンバーランド

ンバーランド (Cumberland) は、イングランドの歴史的カウンティの一つ。1974年にウェストモーランド、ランカシャー、ヨークシャーの一部と統合され、カンブリアとなった。.

新しい!!: ジョン・ドルトンとカンバーランド · 続きを見る »

クエーカー

ーカーのシンボル クエーカー(Quaker)は、キリスト教プロテスタントの一派であるキリスト友会(キリストゆうかい、Religious Society of Friends, フレンド派とも)に対する一般的な呼称であるコトバンク。友会は、17世紀にイングランドで設立された宗教団体である。ピューリタン革命の中で発生した宗派で、教会の制度化・儀式化に反対し、霊的体験を重んじる。この派の人びとが神秘体験にあって身を震わせる(quake)ことからクエーカー(震える人)と俗称されるようになった。会員自身はこの言葉を使わずに友会徒(Friends)と自称している。クエーカーという名称は、創始者ジョージ・フォックスに対して判事が使った言葉に由来する。.

新しい!!: ジョン・ドルトンとクエーカー · 続きを見る »

グレートブリテン及びアイルランド連合王国

historicalユニオン・フラッグ(1606年 - 1800年) historicalセント・パトリック・クロス historical上の2つの旗を合同したのユニオン・フラッグ グレートブリテン及びアイルランド連合王国(グレートブリテンおよびアイルランドれんごうおうこく、United Kingdom of Great Britain and Ireland)は、1801年にグレートブリテン王国とアイルランド王国が合同して成立した王国である。.

新しい!!: ジョン・ドルトンとグレートブリテン及びアイルランド連合王国 · 続きを見る »

ケンダル

ンダル (Kendal) は、イングランド・カンブリアのタウンかつ行政教区である。.

新しい!!: ジョン・ドルトンとケンダル · 続きを見る »

シャルルの法則

ャルルの法則(Charles's lawアトキンス『物理化学 上』 p.19)とは、一定の圧力の下で、気体の体積の温度変化に対する依存性を示した法則である。シャールの法則ともいう。1787年にジャック・シャルルが発見し、1802年にジョセフ・ルイ・ゲイ=リュサックによって初めて発表された。この法則は理想気体に対して成り立つ近似法則であり、実在気体ではずれが生じる。この法則から絶対零度の存在と、普遍的な理想気体温度の存在が見いだされる。 実在気体は厳密にはシャルルの法則を満たさないが、気体が比較的低圧・高温の範囲にある場合にはこの法則の式は非常によい近似式となっている。逆に高圧・低温である場合には気体分子同士に働く分子間力や分子自体の大きさの影響が無視できなくなり、計算される気体体積と若干の誤差を生じる場合が多いので注意すべきである。.

新しい!!: ジョン・ドルトンとシャルルの法則 · 続きを見る »

ジョセフ・ルイ・ゲイ=リュサック

ョセフ・ルイ・ゲイ=リュサック(ゲーリュサックなどとも、Joseph Louis Gay-Lussac、1778年12月6日 - 1850年5月9日)は、フランスの化学者 、物理学者である。気体の体積と温度の関係を示すシャルルの法則の発見者の一人である。アルコールと水の混合についても研究し、アルコール度数のことを「ゲイ=リュサック度数」と呼ぶ国も多い。弟子に有機化学の確立に貢献したユストゥス・フォン・リービッヒがいる。 なお、フランス語でのJoseph Louis Gay-Lussacの発音を日本語に音写すれば、「ジョゼフ・ルイ・ゲ=リュサック」が原音に最も近いといえるだろう。.

新しい!!: ジョン・ドルトンとジョセフ・ルイ・ゲイ=リュサック · 続きを見る »

ジェームズ・プレスコット・ジュール

ェームズ・プレスコット・ジュール(James Prescott Joule, 1818年12月24日 - 1889年10月11日)はイギリスの物理学者。生涯、大学などの研究職に就くことなく、家業の醸造業を営むかたわら研究を行った。ジュールの法則を発見し、熱の仕事当量の値を明らかにするなど、熱力学の発展に重要な寄与をした。熱量の単位ジュールに、その名をとどめる。.

新しい!!: ジョン・ドルトンとジェームズ・プレスコット・ジュール · 続きを見る »

スターリング・ポンド

ターリング・ポンド()は、イギリスの通貨。通貨単位としてのポンドはかつてイギリス連邦諸国で用いられ、エジプトなどでは現在も用いられているが、単にポンドというと通常イギリスのポンドのことを示す。通貨記号は £、国際通貨コード (ISO 4217) は、GBPであるが、STGとも略記する。呼称としてはポンド、スターリングの他に quid が用いられることがある。日本ではイギリス・ポンド、または英ポンドと呼ばれることも多い。.

新しい!!: ジョン・ドルトンとスターリング・ポンド · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: ジョン・ドルトンと元素 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: ジョン・ドルトンと元素記号 · 続きを見る »

倍数比例の法則

倍数比例の法則(ばいすうひれいのほうそく、 )とは、同じ成分元素からなる化合物の間に成り立つ法則である。この法則は、1802年にジョン・ドルトンによって発見され、彼が発表した原子論の有力な証拠として発表された。 法則の和名が現象に則さないため、近年では倍数組成の法則への名称変更が提唱されている。.

新しい!!: ジョン・ドルトンと倍数比例の法則 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: ジョン・ドルトンと王立協会 · 続きを見る »

王立研究所

王立研究所(おうりつけんきゅうしょ、Royal Institution of Great Britain 短縮されて、Royal Institution)はイギリスに1799年に設立された、科学教育、科学研究の機関である。設立者には、ヘンリー・キャヴェンディッシュや、第9代ウィンチルシー伯ジョージ・フィンチがいる。.

新しい!!: ジョン・ドルトンと王立研究所 · 続きを見る »

砂糖

糖の結晶 砂糖(さとう、sugar)は、甘みを持つ調味料(甘味料)である。物質としては糖の結晶で、一般に多用されるいわゆる白砂糖の主な成分はスクロース(ショ糖)である。サトウキビやテンサイなどを原料としてつくられる。 砂糖の歴史は古く、その発明は2500年前と考えられている。インドからイスラム圏とヨーロッパへ順に伝播してゆき、植民地に開拓されたプランテーションでは奴隷を労働力として生産された。19世紀末にはそれまでの高級品ではなく一般に普及する食品となったが、20世紀を通じてグローバルな生産調整が行われた。欧州で1968年から行われてきた砂糖クオータ制度は2017年9月末をもって廃止された。 世界保健機関(WHO)は2003年の報告で、砂糖摂取量は総カロリー対して10%以下となるよう推奨したが、2014年には証拠の蓄積により新たに5%以下にすることの利点を追加した。2016年にWHOは清涼飲料水への課税を促し、肥満、2型糖尿病、虫歯を減らせた。各国は肥満税やガイドラインを作成し、砂糖消費の削減を狙ってきた。 搾りかすなどの副生成物の年間排出量は、世界中で約1億トン以上で、製糖工場自身の燃料として利用されるだけでなく、石灰分を多く含むため、製鉄、化学工業、大気汚染防止のための排煙脱硫材、上下水の浄化、河川海域の水質底質の改善、農業用の土壌改良材 など様々な利用がされている。また搾りかすの一部は、堆肥として農地に還元されるほか、キクラゲの菌床栽培の培地原料としても利用される。.

新しい!!: ジョン・ドルトンと砂糖 · 続きを見る »

科学アカデミー (フランス)

科学アカデミー(かがくアカデミー、仏:Académie des sciences)は、フランス国立の学術団体で、フランス学士院を構成する団体の一つ。フランス科学アカデミー。アカデミー・デ・シアンス。.

新しい!!: ジョン・ドルトンと科学アカデミー (フランス) · 続きを見る »

昼間の晴天時の空 曇りの空 星空 高高度を飛ぶ飛行機から見た空。地上から見る通常の空とは色が異なっている。 空(そら)とは、地上から見上げたときに頭上にひろがる空間のこと。天。.

新しい!!: ジョン・ドルトンと空 · 続きを見る »

緑色の葉 苔むした石段 緑(みどり、綠)は、寒色の一つ。植物の葉のような色で、黄色と青緑の中間色。光の三原色の一つは緑であり、1931年、国際照明委員会は546.1nmの波長を緑 (G) と規定した。500-570nmの波長の色相はおよそ緑である。色材においては例えば、シアンとイエローを混合して作ることができる。緑色(リョクショク、みどりいろ)は同義語。 緑は(緑色の、特に新緑のころの)草・木、新芽・若葉、植物一般、転じて、森林、自然などを指す語としても用いられる。.

新しい!!: ジョン・ドルトンと緑 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: ジョン・ドルトンと真空 · 続きを見る »

統一原子質量単位

統一原子質量単位(とういつげんししつりょうたんい、unified atomic mass unit、記号 u)およびダルトン、ドルトン(dalton、記号 Da)は、原子や分子のような微小な粒子の質量を表す単位である。かつては原子質量単位(記号 amu)とも言ったが、この名と記号は現在は非公式である。ダルトンと Da はかつて非公式だったが、2006年に国際度量衡局(BIPM) により承認された。 統一原子質量単位とダルトンの定義は全く同じで、静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12と定義されている。国際単位系 (SI) では共に、SI単位ではないがSIと併用できるSI併用単位のうち、「SI単位で表されるその数値が実験的に決定され、したがって不確かさが伴う単位」に位置付けられている。.

新しい!!: ジョン・ドルトンと統一原子質量単位 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: ジョン・ドルトンと熱 · 続きを見る »

熱膨張率

熱膨張率(ねつぼうちょうりつ、、略: )は、温度の上昇によって物体の長さ・体積が膨張(熱膨張)する割合を、温度当たりで示したものである。熱膨張係数(ねつぼうちょうけいすう)とも呼ばれる。温度の逆数の次元を持ち、単位は毎ケルビン(記号: )である。.

新しい!!: ジョン・ドルトンと熱膨張率 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: ジョン・ドルトンと物理学者 · 続きを見る »

非国教徒 (イギリス)

非国教徒(ひこっきょうと、nonconformistsあるいはEnglish dissenters)は、イギリスで国教会に属さないプロテスタントの総称。.

新しい!!: ジョン・ドルトンと非国教徒 (イギリス) · 続きを見る »

視覚

視覚(しかく、)とは、眼を受容器とする感覚のこと。.

新しい!!: ジョン・ドルトンと視覚 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: ジョン・ドルトンと質量保存の法則 · 続きを見る »

錐体細胞

人間の'''錐体細胞''' (S, M, L) と桿体細胞 (R) が含む視物質の吸収スペクトル 錐体細胞(すいたいさいぼう, cone cell)とは、視細胞の一種。名前はその形態から。網膜の中心部である黄斑に密に分布する。 錐体視細胞, 錐細胞、円錐細胞などともいう。.

新しい!!: ジョン・ドルトンと錐体細胞 · 続きを見る »

葉に結露した露 クモの網に結露した露 露(つゆ)は、空気中に含まれている水蒸気が放射冷却などの影響で植物の葉や建物の外壁などで水滴となったもの。物に露が着くことを結露(けつろ)という。この項では露の自然や生物に関する面について説明する。人工物に関わること、物理的性質については結露の項を参照。.

新しい!!: ジョン・ドルトンと露 · 続きを見る »

赤いバラの花 赤いリンゴの実 赤(あか、紅、朱、丹)は色のひとつで、熟したイチゴや血液のような色の総称。JIS規格では基本色名の一つ。国際照明委員会 (CIE) は700 nm の波長をRGB表色系においてR(赤)と規定している。赤より波長の長い光を赤外線と呼ぶが、様々な表色系などにおける赤の波長とは間接的にしか関係ない。語源は「明(アカ)るい」に通じるとされる。「朱・緋(あけ)」の表記が用いられることもある。赤色(セキショク、あかいろ)は赤の同義語。.

新しい!!: ジョン・ドルトンと赤 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: ジョン・ドルトンと蒸発 · 続きを見る »

蒸気

蒸気(じょうき、vapor, vapour)は、物質が液体から蒸発して、あるいは固体から昇華して、気体になった状態のもの。特に臨界温度以下の物質の気相を指すこともある。日本語においてしばしば水蒸気 (steam)の略語として用いられる。蒸気機関の蒸気も水蒸気の意味である。液相・固相と平衡を保って共存している状態の圧力を蒸気圧という。 Category:気体 Category:物質 Category:和製漢語.

新しい!!: ジョン・ドルトンと蒸気 · 続きを見る »

蒸気圧

蒸気圧(じょうきあつ、)、あるいは平衡蒸気圧(へいこうじょうきあつ、)とは、液相あるいは固相にある物質と相平衡になるような、その物質の気相の圧力のことである。蒸気圧は物質に特有の物性値であり、温度に依存して決まる。 物質の沸点とは、その物質が液相にあるときの蒸気圧が外圧に等しくなる温度である。また、物質の昇華点とは、その物質が固相にあるときの蒸気圧が外圧に等しくなる温度である。さらに物質が液相と固相の平衡状態にあるときの蒸気圧が外圧に等しくなる温度は三重点と呼ばれる。 液体の物質の周囲でのその物質の蒸気の分圧が液相の蒸気圧に等しいとき、その液体は蒸気と気液平衡の状態にある。 気液平衡から温度を上げると蒸気圧が上がり、蒸気の分圧より大きくなる。蒸気を理想気体とみなせば、分圧は蒸気量に比例する。液体が蒸発することで蒸気量が増えて分圧も上がり、新たな温度での蒸気圧と等しくなることで再び気液平衡となる。逆に温度を下げると蒸気圧が下がる。このときは蒸気が液体に凝縮することで分圧が下がり、新たな温度で気液平衡となる。気相と固相の相平衡でも同様に、温度の変化に対して物質が昇華して分圧が蒸気圧と等しくなるように蒸気量が変化して平衡が保たれる。 純物質の蒸気圧はクラウジウス・クラペイロンの式によって近似される。溶液であれば蒸気圧降下が起こり、これはラウールの法則で近似される。.

新しい!!: ジョン・ドルトンと蒸気圧 · 続きを見る »

脳梗塞

脳梗塞(のうこうそく、stroke)、または脳軟化症(のうなんかしょう)「脳軟化症」の名の由来は、脳細胞は壊死すると溶けてしまうこと(「融解壊死」)から。とは、脳を栄養する動脈の閉塞、または狭窄のため、脳虚血を来たし、脳組織が酸素、または栄養の不足のため壊死、または壊死に近い状態になることをいう。また、それによる諸症状も脳梗塞と呼ばれることがある。なかでも、症状が激烈で(片麻痺、意識障害、失語など)突然に発症したものは、他の原因によるものも含め、一般に脳卒中と呼ばれる。それに対して、ゆっくりと進行して認知症(脳血管性認知症)などの形をとるものもある。 日本における患者数は約150万人で、毎年約50万人が発症するとされ、日本人の死亡原因の中で高い順位にある高頻度な疾患である。また、後遺症を残して介護が必要となることが多く、寝たきりの原因の約3割、患者の治療費は日本の年間医療費の1割を占めており、福祉の面でも大きな課題を伴う疾患である。.

新しい!!: ジョン・ドルトンと脳梗塞 · 続きを見る »

自然哲学

自然哲学(しぜんてつがく、羅:philosophia naturalis)とは、自然の事象や生起についての体系的理解および理論的考察の総称であり、自然を総合的・統一的に解釈し説明しようとする形而上学である「自然哲学 physica; philosophia naturalis」『ブリタニカ国際大百科事典」。自然学(羅:physica)と呼ばれた。自然、すなわちありとあらゆるものごとのnature(本性、自然 英・仏: nature、Natur)に関する哲学である。しかし同時に人間の本性の分析を含むこともあり、神学、形而上学、心理学、道徳哲学をも含む。自然哲学の一面として、自然魔術(羅:magia naturalis)がある。自然哲学は、学問の各分野の間においても宇宙の様々な局面の間でも、事物が相互に結ばれているという感覚を特徴とする。 現在では、「自然科学」とほぼ同義語として限定された意味で用いられることもあるが、その範囲と意図はもっと広大である。「自然哲学」は、主にルネサンス以降の近代自然科学の確立期から19世紀初頭までの間の諸考察を指すといったほうが良いだろう。自然哲学的な観点が、より専門化・細分化された狭い「科学的な」観点に徐々に取って代わられるのは、19世紀になってからである。 自然哲学の探求者の多くは宗教的な人間であり、抑圧的な宗教者と科学者の戦いという図式ではなかった。世界は「自然という書物」であり、神のメッセージだと考えられていたのである。ヨーロッパでは近代まで、ほとんど全ての科学思想家はキリスト教を信じ実践しており、神学的真実と科学的真実の間の相互連結に疑いはなかった。ジョンズ・ホプキンス大学教授は、科学の探求に無神論的な視点が必要であるという考え方は、20世紀に作られた神話にすぎないと指摘している。.

新しい!!: ジョン・ドルトンと自然哲学 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: ジョン・ドルトンと酸 · 続きを見る »

色覚異常

色覚異常(しきかくいじょう)とは、ヒトの色覚が正常色覚ではない事を示す診断名である。「色盲」などとも呼ばれ、2017年9月頃からは、「色覚多様性」とも呼ばれるようになった。正常色覚とされる範囲は、眼科学によって定義される。要因が先天性である場合を先天性色覚異常、後天性である場合を後天性色覚異常と分類する。先天性色覚異常を持つ人は、日本においては男性で約5%、女性で約0.2%の割合であるが、フランスや北欧では男性で約10%、女性で約0.5%であり、アフリカ系の人では2~4%程度である。.

新しい!!: ジョン・ドルトンと色覚異常 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: ジョン・ドルトンと英語 · 続きを見る »

(あめ)とは、大気から水の滴が落下する現象で、降水現象および天気の一種。また、落下する水滴そのもの(雨粒)のことグランド現代大百科事典、大田正次『雨』p412-413。大気に含まれる水蒸気が源であり、冷却されて凝結した微小な水滴が雲を形成、雲の中で水滴が成長し、やがて重力により落下してくるものである。ただし、成長の過程で一旦凍結し氷晶を経て再び融解するものもある。地球上の水循環を構成する最大の淡水供給源で、生態系に多岐にわたり関与するほか、農業や水力発電などを通して人類の生活にも関与している。.

新しい!!: ジョン・ドルトンと雨 · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

新しい!!: ジョン・ドルトンと核分裂反応 · 続きを見る »

核融合反応

核融合反応(かくゆうごうはんのう、nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。.

新しい!!: ジョン・ドルトンと核融合反応 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: ジョン・ドルトンと水 · 続きを見る »

水銀

水銀(すいぎん、mercury、hydrargyrum)は原子番号80の元素。元素記号は Hg。汞(みずがね)とも書く。第12族元素に属す。常温、常圧で凝固しない唯一の金属元素で、銀のような白い光沢を放つことからこの名がついている。 硫化物である辰砂 (HgS) 及び単体である自然水銀 (Hg) として主に産出する。.

新しい!!: ジョン・ドルトンと水銀 · 続きを見る »

水蒸気

水蒸気(すいじょうき、稀にスチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合を湿度という。.

新しい!!: ジョン・ドルトンと水蒸気 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: ジョン・ドルトンと気体 · 続きを見る »

気象学

気象学(きしょうがく、meteorology)は、地球の大気で起こる諸現象(気象)や個々の流体現象を研究する学問。自然科学あるいは地球科学の一分野。 気象を長期的な傾向から、あるいは地理学的観点から研究する気候学は、気象学の一分野とされる場合もあるが、並列する学問とされる場合もある。現代では気象学と気候学をまとめて大気科学(atmospheric science)と呼ぶこともある。 なお、将来の大気の状態の予測という実用に特化した分野を天気予報(気象予報)という。.

新しい!!: ジョン・ドルトンと気象学 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: ジョン・ドルトンと温度 · 続きを見る »

湧水

層湿原の湧水の例:瀞川平(但馬高原植物園内、兵庫県香美町) 湧水(ゆうすい)は、地下水が地表に自然に出てきたもののことである。湧き水(わきみず)や泉(いずみ)、湧泉(ゆうせん)ともいう。大規模な湧水はそのまま川の源流となることもある。.

新しい!!: ジョン・ドルトンと湧水 · 続きを見る »

湖水地方

湖水地方(こすいちほう、英:Lake District)は、イングランド(England)北西部ウェストモーランド・カンバーランド郡・ランカシャー地方にまたがる地域の名称である。.

新しい!!: ジョン・ドルトンと湖水地方 · 続きを見る »

滴定

滴定用具(右)。ビュレット、ビュレット台、コニカルビーカー等受け器。左図はピンチコック部拡大。2方コックとの一体型ビュレットもある。 滴定(てきてい、titration)とは化学反応を用いて化学物質の量を測定する定量分析法である。特に中和点を利用するものを中和滴定と呼ぶ。被滴定物質に対して、濃度が既知の標準物質である滴定剤をビュレットを使用し滴下して反応を進行させる。全ての被滴定物質が反応し尽した時点を当量点とよび、呈色指示薬を使って比色法で決定したり、pHや酸化還元電位など物性の変化を測定して決定する。当量点に達するまでに必要とした滴定剤の体積をビュレットの目盛りより求め、化学量論的な計算により、被滴定物質の量を決定する。 滴定に用いられる反応には.

新しい!!: ジョン・ドルトンと滴定 · 続きを見る »

日記

日記(にっき)とは、日々の出来事を紙などに記録したものである。単なる記録として扱われるものから、文学として扱われるものまで、その内容は様々である。ある人物の生涯にわたって記されるような長期にわたるものから、ある旅、ある職務、ある事件などの間だけ記された短期のものまで、期間・分量も様々であり、西洋・東洋を問わず、世界的に存在する。.

新しい!!: ジョン・ドルトンと日記 · 続きを見る »

1766年

記載なし。

新しい!!: ジョン・ドルトンと1766年 · 続きを見る »

1826年

記載なし。

新しい!!: ジョン・ドルトンと1826年 · 続きを見る »

1844年

記載なし。

新しい!!: ジョン・ドルトンと1844年 · 続きを見る »

7月27日

7月27日(しちがつにじゅうななにち、しちがつにじゅうしちにち)はグレゴリオ暦で年始から208日目(閏年では209日目)にあたり、年末まであと157日ある。誕生花はフウロソウ、ホオズキ。.

新しい!!: ジョン・ドルトンと7月27日 · 続きを見る »

9月6日

9月6日(くがつむいか)は、グレゴリオ暦で年始から249日目(閏年では250日目)にあたり、年末まであと116日ある。.

新しい!!: ジョン・ドルトンと9月6日 · 続きを見る »

ここにリダイレクトされます:

ジョン・ドールトン

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »