ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

キャッソン不変量

索引 キャッソン不変量

数学の一分野である幾何学的トポロジーの(3-dimensional topology)では、キャッソン不変量(Casson invariant)は、(Andrew Casson)により導入された向き付け可能な整数(homology 3-sphere)の整数値不変量である。 ケルビン・ウォーカー(Kevin Walker)は、1992年に、キャッソン・ウォーカー不変量(Casson-Walker invariant)と呼ばれる(rational homology 3-sphere)の拡張を発見し、クリスティーヌ・レスコップは、1995年にすべての閉じたな向きつけられた(3-manifold)へ拡張した。.

13 関係: 基本群幾何学的トポロジーチャーン・サイモンズ理論モース理論ロホリンの定理フレアーホモロジーベッチ数アレクサンダー多項式オイラー数コンパクト空間特殊ユニタリ群閉多様体連結和

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: キャッソン不変量と基本群 · 続きを見る »

幾何学的トポロジー

数学において、幾何学的トポロジー(geometric topology)は、多様体とそれらの間の写像、特に多様体から多様体への埋め込み(embedding)の研究をする。.

新しい!!: キャッソン不変量と幾何学的トポロジー · 続きを見る »

チャーン・サイモンズ理論

チャーン・サイモンズ理論(Chern–Simons theory)は3次元のシュワルツタイプの位相場理論であり、エドワード・ウィッテンによって発展した。この名前は作用がチャーン・サイモンズ 3-形式を積分した値に比例するからである。 凝縮系物性論では、チャーン・サイモンズ理論は状態のとして表される。数学では、ジョーンズ多項式のように結び目不変量や の不変量の計算に使われている。 特に、チャーン・サイモンズ理論は、理論のゲージ群と呼ばれる単純リー群 G と理論のレベルと呼ばれる作用にかける定数の数値により特徴付けられる。作用はゲージ変換に依存しているが、量子場理論の分配函数として、レベルが整数であり、ゲージが3-次元時空の全ての境界でゼロとなるときにうまく定義される。.

新しい!!: キャッソン不変量とチャーン・サイモンズ理論 · 続きを見る »

モース理論

微分トポロジーにおいて、モース理論(モースりろん、Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。 (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のやを見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) のの証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。.

新しい!!: キャッソン不変量とモース理論 · 続きを見る »

ロホリンの定理

数学の一分野である 4次元の位相幾何学(トポロジー)において、ロホリンの定理とは滑らかでコンパクトな 4次元多様体 M がスピン構造を持つならば(同値だが、第2スティーフェル・ホイットニー類 w2(M).

新しい!!: キャッソン不変量とロホリンの定理 · 続きを見る »

フレアーホモロジー

数学において、フレアーホモロジー(Floer homology)は、シンプレクティック幾何学や低次元トポロジーの研究に使用される有用なツールである。フレアーホモロジーは、有限次元のモース理論の無限次元の類似として発生した高級な不変量である。アンドレアス・フレアー(Andreas Floer)は、現在はハミルトニアンフレアーホモロジーと呼ばれているフレアーホモロジーの最初のバージョンを導入し、シンプレクティック幾何学のアーノルド予想の証明に使った。フレアーは、これと密接に関連するシンプレクティック多様体のラグランジアン部分多様体の理論を開発した。フレアーは、また、シンプレクティック多様体のラグランジアン部分多様体に密接に関連する理論も開発した。フレアーが第三番目に構成したことは、ヤン・ミルズ汎函数を使い、ホモロジー群を閉 3次元多様体へ関連付けた。これらの理論とそれの適用は、3次元や 4次元トポロジーと同様に、シンプレクティック多様体や接触多様体の現在の研究で、基本的な役割を果たしている。 フレアーホモロジーは、無限次元多様体とその上の実数値函数をある興味深い対象へ結び付けることにより定義される。例えば、シンプレクティック幾何学のバージョンでは、フレアーホモロジーは、シンプレクティック作用汎函数をシンプレクティック多様体の自由ループ空間へ結び付ける。、3次元多様体の((instanton))バージョンでは、3次元多様体上のSU(2)-接続の空間へ結び付ける。おまかに言うと、フレアーホモロジーは、無限次元多様体の上の自然な函数から計算されるモースホモロジーである。この自然な函数は、シンプレクティックな場合は、シンプレクティック作用を持つシンプレクティック多様体の自由ループ空間であり、3次元多様体の場合は、チャーン-サイモンズ汎函数を持つ 3次元多様体上の SU(2)-接続の空間である。大まかには、フレアーホモロジーは、無限次元多様体上の函数のモースホモロジーである。フレアーチェーン複体は、函数の臨界点(critical point)(もしくは、臨界点のある集まりでもよい)で張られるアーベル群から構成される。チェーン複体の微分は、臨界点と臨界点と(従って、臨界点の集まり)を結ぶ函数の勾配の力線の数を数えることにより定義される。このベクトル空間の線型な自己準同型は、2つの臨界点を結ぶ函数の勾配の力線を数えることで定義される。フレアーホモロジーは、このチェーン複体のホモロジーである。 フレアーのアイデアをうまく適用できる状況では、勾配の力線の方程式が、幾何学的解析的に扱いやすい典型的な方程式である。シンプレクティックフレアーホモロジーに対し、ループ空間の中の経路の勾配の力線の方程式は、注目しているシンプレクティック多様体への円筒形(cylinder)(ループの経路の全空間)からの写像のコーシー・リーマンの方程式(の摂動バージョン)であり、解は(pseudoholomorphic curves)として知られている。従って、(Gromov compactness theorem)は、微分が well-defined で、二乗が 0 となるので、フレアーホモロジーを定義することができることを示した。インスタントンフレアーホモロジーに対し、勾配の力線の方程式はまさに、実直線と交差する 3次元多様体上のヤン・ミルズ方程式である。.

新しい!!: キャッソン不変量とフレアーホモロジー · 続きを見る »

ベッチ数

代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

新しい!!: キャッソン不変量とベッチ数 · 続きを見る »

アレクサンダー多項式

数学におけるアレクサンダー多項式(あれきさんだーたこうしき、Alexander polynomial; アレクサンダー多項式)は、各種結び目に整数係数多項式を割り当てる結び目不変量である。アレクサンダー多項式は最初に発見されたで、1923年にが発見した。1969年にジョン・コンウェイは、この多項式(の、今日ではアレクサンダー・コンウェイ多項式と呼ばれている形)が、スケイン関係式を用いて計算できることを示した。1984年にジョーンズ多項式が発見されて初めて、アレクサンダー多項式の幾何学的な意味が明らかになった。また、コンウェイは、すぐにアレクサンダー多項式を再研究し、アレクサンダー自身の論文の中で、すでに同様の スケイン関係式 が示されていることを明らかにしている。.

新しい!!: キャッソン不変量とアレクサンダー多項式 · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: キャッソン不変量とオイラー数 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: キャッソン不変量とコンパクト空間 · 続きを見る »

特殊ユニタリ群

次の特殊ユニタリ群(とくしゅユニタリぐん、special unitary group) とは、行列式が1の 次ユニタリ行列の為す群の事である。群の演算は行列の積で与えられる。 特殊ユニタリ群 はユニタリ群 の部分群であり、さらに一般線型群 の部分群である。 特殊ユニタリ群は素粒子物理学において、電弱相互作用のワインバーグ=サラム理論や強い相互作用の量子色力学、あるいはそれらを統合した標準模型や大統一理論などに出てくる。.

新しい!!: キャッソン不変量と特殊ユニタリ群 · 続きを見る »

閉多様体

数学において、閉多様体 (closed manifold) とは、境界を持たないコンパクトな多様体のことである。境界が存在しえない文脈では、任意のコンパクト多様体が閉多様体である。 コンパクト多様体は、直感的な意味で、「有限」である。コンパクト性の基本的な性質により、閉多様体は連結閉多様体の有限個の非交和である。幾何学的トポロジーの最も基本的な目的の 1 つは、閉多様体がどのくらいあるかを理解することである。.

新しい!!: キャッソン不変量と閉多様体 · 続きを見る »

連結和

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。 このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。.

新しい!!: キャッソン不変量と連結和 · 続きを見る »

ここにリダイレクトされます:

一般キャッソン不変量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »